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GENERAL INTRODUCTION 

2+ 
Organochromiura(III) cations with the general formula RCrfHgO)^ 

have been extensively studied due to interest in the chemistry of the 

carbon-chromium bond. Members of this family are considered to be 

complexes of chromium(III) in which the metal is octahedrally coordi­

nated to five water molecules and R, the latter through a sigma carbon-

chromium bond. In a formal sense, the organo ligand is considered as a 

carbanion, to conform with the normally accepted convention for 

organometallic compounds. This assignment is not meant to imply that 

the C-Cr bond is ionic in nature, indeed many of its reactions can be 

interpreted only in terms of a covalent interaction. However, the 

relative solution stability of these complexes is characteristic of 

chromium(III) complexes, which are generally substitution inert (1). 

Yet, only recently have solids been isolated (2) of two organochro-

mium(III) perchlorates; the great majority of these species exist only 

in solution, where their intense UV-visible absorption bands serve as 

a valuable method of detection. 

In the late 1950^ Anet and Leblanc (3) reported the first prepara­

tion of an organochromium(III) species in this family, the benzyl-

2+ 
pentaaquochromium(III) ion, C^HgCHgCrfHgO)^ , obtained and purified 

as solutions of the cationic complex in aqueous perchloric acid. The 

preparation consisted of a two-stage reduction of a benzyl halide by the 

chromium(II) ion. In the first step, chromium(II) abstracts a halogen 

atom from the halide, generating the benzyl radical. In a rapid subse-

2+ 
quent reaction, the radical is scavenged by Cr^^, resulting in formation 
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of the organochromium(III) complex. 

C^HgCHgX + > XCr(H20)^2+ + c^H^CHg' (1) 

(2)  

Substituted benzylchromium(III) ions soon followed (4), and more recently 

(5,6), difunctional complexes of bis(benzylchromium(III)). While the 

chromium(II) reduction of organic halides is not of general utility for 

the synthesis of a complete variety of organochromium(III) cations, it 

has proved successful for "activated" halides. In particular, halomethyl 

complexes, where R = -CHClg (7,8), -CHgCl; -CHBr^, -CHgBr; -CHIg, -CHgl 

(8); -CClg (9); and -CF^ (10) are all prepared by this route from 

chloroform, bromoform, iodoform, carbon tetrachloride, and CF^I, 

respectively. Likewise, reductions of bromomethylpyridinium bromides 

lead to the pyridinomethylchromium(III) ions (11,12), or of halogenoacetic 

acids to HOOCCHgCrCHgO)^^^ (13). 

For those complexes which cannot be prepared by reaction with organic 

halides, because chromium(II) reduction is too slow to be synthetically 

useful, the reaction of chromium(II) with organic peroxides or hydro­

peroxides has been exploited (14-16) as a source of organic free-

radicals. 

R'-f-OOH or R' + OOR + Cr^"^-> R'-f-O* + [CrOH + CrOR] (3) 
' aq 

R'-f-O* ^ R* + CHgCOCHg 

R* + Cr2+ ̂  RCr(H.O)^^'*' (4) 

After unimoleculer g-scission of the alkoxy radical, the free-radical is 

2+ 
scavenged by another Cr ion, forming the organochromium(III) complex, 

aq 
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Reaction 4. This scheme was first used by Kochi and Rust (14) as an 

alternative route to benzylchromium(III), and has since been useful for 

2+ 
the synthesis of CHgCrCHgO)^ (16-18), and many other primary and 

secondary alkylchromiura(III) complexes (16,19,20). «-Hydroxy and 

a-alkoxyalkylchromium(III) species have been synthesized, very recently, 

using a modified Fenton's reagent as the source of the hydroxyalkyl or 

alkoxyalkyl radical (18,21-24). Finally, chromium(II) reductions of 

3-, 4-pyridineacrylic, maleic, and fumaric acids have resulted in isola­

tion of remarkably stable organochromium(III) complexes (2). 

Pulse radiolysis has been useful in detecting the more unstable 

organochroraium(III) species (25), which cannot be investigated by normal 

methods. Additionally, rates for Reaction 4 have been directly 

measured by pulse radiolysis for a large series of substituted alkyl 

radicals, confirming that rates of coupling are competitive with bimolec-

ular reactions of R . Second-order rate constants of (0.34 - 5.1) x 

8  - 1  - 1  
10 M s have been determined for Reaction 4 (25), having values 

which do not vary widely for different organic radicals. 

2+ 
Reactions of RCr^HgO)^ which have been studied include electro-

philic cleavage of the carbon-chromium bond. Kinetic investigations of 

Br^ (19,26,27), (26), and IBr (28) have established dealkylation 

occurs with formation of the organohalides, RBr, RI, and RI, respectively, 

3+ 
and Cr(H20)g , Reaction 5. 

RCr(H20)^^'*' + Xg = RX + CrCHgO)^^* + x" (5) 
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The reactions were considered to proceed by an 8^2 mechanism 

(bimolecular electrophilic substitution). Electrophilic cleavage of 

some organochromium(III) ions can also be accomplished with mercury(II) 

or CHgHg(II) ions (3,8,20) resulting in organomercurials of the general 

formula RHg^ or CH^HgR. Other organochromium(III) complexes react with 

Hg(II) by an electron-transfer process (8,22). Characterization of 

organomercurial products has been useful in identifying the starting 

organochromium(III) ion. 

2+ 
Homolysis of the carbon-chromium bond to form R and Cr has been 

aq 
2+ 

definitely established for several RCr(H20)g complexes. 

RCr(H20)5^"^ ̂  R* + CrJ^ (6) 

Its importance, relative to other competing reactions, and the rate 

constant for homolytic cleavage are greatly dependent upon the organo 

ligand. For example, hemolysis is an important pathway leading to 

decomposition of benzylchromium(III), when in the presence of oxidants. 

2+ 
A kinetic investigation (29) of the reaction of C^HgCHgCrCHpO)^ with a 

variety of oxidants—Fe^^, Co(NH„) ̂Cl^^, Co(NH-) Cu^^, H»0„, and 

Og, in aqueous perchloric acid, gave a rate law independent of the nature 

of the oxidant and its concentration. A first-order dependence on 

[C,H_CH„Cr ] was demonstrated, 
o 3 z aq 

-d 

m . .  dt - . (7) 

where R = CgH^CHg. The products (29) of reaction were those expected 

2+ 
from oxidation of either Cr^^ or benzyl radicals, or both, by the 
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specific oxidant. These results were interpreted (29) as a rate-limiting 

hemolysis of the organochromium(III) ion, followed by rapid oxidation of 

Cr^q and/or CgH^CH^ by the oxidant present: 

Ic 
C^HJCH/ + Cr^+ 

„ 2+ fast oxidation. 
C^aq » 

n u nn ' fast oxidation 
5^ 2 > 

or dimerzation 

The experimental rate constant k of Equation 7 was identified with 

that of hemolysis. 

Kinetic studies of pyridinomethylchromium(III) ion (30-32); 

difunctional complexes of bis(benzylchromium(III)) cations (5,6); and 

ot-hydroxy, or a-alkoxyalkylchromium(III) ions (21-24) have similarly 

demonstrated the importance of hemolysis for these species. 

2+ 
Acidolysis (often called protonolysis) of the RCr(H20)^ family of 

complexes occurs competively with hemolysis, the importance of each 

pathway depending upon the particular complex. Acidolysis leads to 

heterelytic cleavage of the carbon-chromium bond to release RH and 

[^(HgO)^^^, Reaction 8. 

RCr(H20)g2+ + = RH + Cr(H20)^3+ (8) 

Protoiiolysis reactions have been studied for a number of simple alkyl 

(16,18,20); a- and 3-hydroxyalkyl (18,24,25); a-alkexyalkyl (24,25); 

a-carboxyalkyl (25,27); benzylchromiuiii(III) (33); and organochromium(III) 
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complexes obtained from pyrldlneacryllc, malelc, and fumarlc acids (34). 

A general mechanism does not apply for acldolysls of these organo-

chromium(III) complexes. Both acld-lndependent and acid-dependent 

pathways may exist, depending on R; in general the rate constant for 

+ + 
Equation 8 is of the form + k[HgO ]. A direct dependence on [H^O ] 

is interpreted as electrophilic attack on the carbon-chromium bond (35), 

while a solvent assisted cleavage is postulated (18) for acid-independent 

loss of RH. 

In an effort to extend the knowledge of the chemistry of carbon-

chromium and also the hydrldo-chromium bonds, the present study was 

undertaken. In Part I of this thesig a kinetic analysis of the reaction 

2+ 
of (CHg)2CHCr(H20)g with molecular oxygen is presented. This work 

represents the first complete study of the oxidation of an organo-

chromium(III) ion of this family by 0^, which does not Involve indirect 

reaction through simple hemolysis. The protonolysis reactions of two 

highly unstable chromlum(III) complexes are presented in Part II and 

Part III. These reactions were investigated using the flash photolysis 

technique. A new member of the RCrCHgO)^^* family, HOCHgCHgCrCHgO)^^^ was 

generated by three different photochemical systems. The hydrldo analog, 

2+ 
HCr(H20)g , studied previously (36) by pulse radiolysis, was success­

fully prepared and characterized using flash photolysis. In the 

Appendix, a description of the flash photolysis Instrument, assembled 

in the course of this study, will be presented along with a guide to 

its proper usage. 
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PART I. AUTOXIDATION OF THE ISOPROPYL(PENTAAQUO) CHROMIUM (III) COMPLEX 
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INTRODUCTION 

Statement of Problem 

2+ 
Many of the organochromium(III) ions of the family RCrCHgO)^ 

appear to be stable toward molecular oxygen, although this reaction had 

previously been specifically studied only for the benzylchromium(III) 

ion. The simple alkylchromium(III) ions such as -CHg, -n-C^Hy, 

etc., are inert to molecular oxygen, at least within the time they 

undergo decomposition by acidolysis (20). Likewise, a-carboxymethyl 

(2,7), and halomethylchromium(III) (8-10) complexes appear to be air-

stable or nearly so. Species which undergo hemolysis are, of course, 

oxygen sensitive, as a result of scavenging of the homolysis fragments 

by molecular oxygen. Indeed, the above list of oxygen-inert organo-

chromium(III) ions might well be a listing of complexes for which 

homolysis is unimportant. 

2+ 
Notable exceptions to these oxygen-stable RCr(H20)^ ions are 

benzyl- (29), sec-butyl- (20), and isopropylchromium(III) complexes (20), 

the latter of which is the subject of this part of the thesis. A kinetic 

2+ 
study of reactions of (CHg)^CHCr(HgO)^ with various oxidants was 

initiated, with the expectation that this organochromium(III) ion might, 

like benzylchromium(III), react simply by homolysis. However, the 

reaction of isopropylchromium(III) with molecular oxygen was unique to 

this oxidant, occurring faster than with the other oxidants, clearly 

indicating the chemistry in the presence of Og was not only homolysis. 
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As to be presented in detail later, the rate of reaction of 

2+ 
(CH2)2CHCr(H20)^ with Og was found to involve a three-halves-order 

dependence on the concentration of the organochromium(III) ion and a 

zero-order dependence on the concentration of molecular oxygen. While 

a number of reasonable reaction mechanisms could be invoked to explain • 

the observed kinetics, only two schemes, both free-radical chain mecha­

nisms, are particularly attractive. Schemes A and B, differing only in 

the identity of the free-radical which serves as the chain-carrier, are 

presented below. 

Scheme A: 

Initiation: (CH2)2CHCr^'^ -»• (CHgïgCH + Cr^"*" (1-1) 

Propagation: , 

(CHgigCH + Og ^ (CH3)2CH00* (1-2) 

(CH2)2CH00* + (CH2)2CHCr^"^ (CH2)2CH00Cr^"*' + (CH2)2CH (1-3) 

Termination; 

2(CH2)2CH00* ^ (00^)200 + (CH3)2CH0H + 0^ (1-4) 

Scheme B: 

Initiation; (CH3)2CHCrJ^ -> (^3)2^* + Cr^^ (1-1) 

Propagation: _ „ 

cr;, + " C'°2.q (1-5) 

CrO,^"*" + (CH,),CHCr^''' * (CfLj.CHOOCt^* + (1-6) 

+ 
Termination; „, 2H „, 

2Cr02a, » 2Cr + (1-7) 
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As either scheme explains the observed reaction kinetics, further 

experimentation centered on distinguishing between the two schemes by 

studying the effect of specific radical scavengers. 

Scheme A bears a close resemblance to the autoxidation of hydro­

carbons. The oxygenation of organometallic compounds (37-40) often 

involves free-radical intermediates, in mechanisms similar to the 

degradation of hydrocarbons by molecular oxygen. A concise review of 

these types of reactions is presented below, with particular attention 

directed to the role of metal ions or their complexes in autoxidations. 

Review of Autoxidations 

The oxidation of organic compounds by molecular oxygen is of con­

siderable commercial importance (41). Metal ions often function as 

homogeneous catalysts for these oxidations, accounting for the intense 

interest in the ability of soluble metal complexes to activate molecular 

oxygen (42), Many of the oxidations occur under relatively mild condi­

tions, almost spontaneously, and are known as autoxidations (43). These 

processes can occur in the absence of metal ions, but their presence 

increases the overall rate of oxidation (44). 

The autoxidations of most organic substrates (including alkanes, 

alkenes, alcohols, aldehydes, and ethers) proceed by free-radical chain 

mechanisms in which organic hydroperoxides are generally formed (43). 

RH + Og ROOH (1-8) 

Uncatalyzed reactions proceed by the following mechanism; 
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Initiation! , 
Initiator ->• 2In 

Propagation: 

R + Og + ROO 

ROO* + RH ->• R* + ROOH 

Termination; , 
2R00 ->• nonradical products. 

Initiation is often accomplished by addition of thermally unstable 

azonitriles or peroxides (44). Metal ions also are efficient initiators. 

Direct interaction of the metal catalyst with the substrate can produce 

radicals via three possible mechanisms (45). In Reaction 1-9, electron 

transfer from RH to the metal complex results in a one electron reduc­

tion of the catalyst accompanied by radical production. 

RH + M""'" •> R* + + H"*" (1-9) 

Electrophilic substitution. Reactions 1-10, or homolytic attack. Reac­

tions 1-11, results in the same products, reduced metal complex and R*. 

RH + + H^ (1-lOa) 

RM (n-l)+ + j^(n-l)+ (1-lOb) 

RH + m""*" •> R* + Hm"*^ (1-lla) 

HMn+ + H+ + %(*-!)+ (1-llb) 

Internal electron transfer (46) from a catalyst ligand to the metal is 

a particularly important pathway of initiation for carboxylato complexes. 

y 

R-C-O-m""*" -»• RCOO* + (l-12a) 

RCOO* + R* + COG (l-12b) 
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The efficiency of processes involving electron transfer and electro-

philic substitution is expected to be dependent upon the oxidizability 

of the organic substrate, and the oxidation potential of Likewise, 

hydrogen transfer from substrate to metal is related to the oxidizing 

ability of and stability of the radical. 

Direct oxygen activation by the metal catalyst may also be respon­

sible for chain initiation. "End-on" coordination of molecular oxygen 

would form a peroxometal species, which might be expected, like 

alkylperoxy radicals, to undergo hydrogen transfer from the substrate. 

, n+ 
M + O2 -> MOO (l-13a) 

,n+ ^ 
RH + MOO R + MOOH (l-13b) 

While such initiations have often been proposed (44,46), and may in fact 

be operative, efforts to obtain direct evidence have been hampered. 

The difficulty arises from Interference by the much more facile reactions 

of the metal catalyst with hydroperoxide generated in the autoxidatlon. 

These reactions tend to mask any direct activation of 0^ which may be 

occurring simultaneously. 

In reality, decomposition of hydroperoxides is by far the most 

important catalytic pathway for radical generation. The catalyst is 

recycled between Reactions 1-14, 

ROOH + m""*" + RO* + + oh" , (l-14a) 

ROOH + + ROO* + m""*" + h"*" , (l-14b) 
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producing alkoxy and alkylperoxy radicals. In the early stages of an 

autoxidation, when only trace amounts of ROOH are present, Reactions 

1-14 constitute an initiation step, but as the autoxidation proceeds, 

and the concentration of alkylhydroperoxide increases, the scheme becomes 

an important source of the chain-carrying RO and ROO radicals. The 

Co(II)/Co(III) and Mn(II)/Mn(III) redox systems have been widely 

exploited for the catalytic decomposition of hydroperoxides (44). 

Catalysts at high concentrations, however, can act as inhibitors by 

effectively competing with the substrate RH for alkylperoxy radicals 

(40,44,47,48). 

ROO* + 4- R00~ + (1-15) 

Organometallic complexes are commonly degraded by molecular oxygen, 

but with a few exceptions the mechanisms of decomposition have been 

little studied. Alkyls of Groups lA, IIA, IIIA, and IVA metals all give 

alkylperoxometallic compounds when treated with oxygen (37-40). Kinetic 

studies, particularly with the organoboranes (49-59), have shown 

alkylperoxy radicals are intimately involved. The reaction schemes 

proposed (49-59) bear a close resemblance to those demonstrated for the 

autoxidation of organic compounds. Alkylperoxo complexes of the 

transition metals are much less common, although unstable organometallic 

peroxides of titanium, zirconium, molybdenum, and tungsten have been 

reported (60), Quite stable solids of alkylperoxocobaloximes (60-67) 

can be prepared by oxygenation of a solution of the alkylcobaloxime. 

Peroxo compounds of the early transition metals were believed (60) to be 
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formed by a mechanism similar to the autoxidation of alkylboranes; 

however, a free-radical mechanism was discounted for the oxygenation of 

alkylperoxocobaloximes (68), but the evidence for the latter pro­

cess remains indecisive. Because autoxidations of alkyl metals are 

relevant to the understanding of metal catalyzed autoxidations of organic 

compounds, further mechanistic studies are warranted. Therefore, the 

reaction of isopropylchromium(III) with molecular oxygen can be seen to 

be of broader relevance than simply the study of carbon-chromium bonds. 
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EXPERIMENTAL 

Materials 

(CH2)2CHCr(H20)^2+ 

The isopropylpentaaquochroinium(III) ion was prepared in aqueous 

perchloric acid by modification of the reported procedure (20). The 

synthesis involves the two equivalent reduction of 2,3-dimethyl-2-butyl 

hydroperoxide by chromium(II) perchlorate, Reaction 1-16. 

ZCr^q + (CHgjgCHCCHgigCOOH + H^o"^ = (CHgigCHCrCH^O)^^^ 

+ Cr(H20)g3+ + CHgCOCHg (1-16) 

In practice, an excess of alkyl hydroperoxide was used to insure complete 

2+ 
reaction of Cr^g, which interfered during ion-exchange chromatography 

of the products. Excess peroxide was removed before elution by washing 

with a 20% v/v acetone/water solution (0.001 M HCIO^). In a typical 

synthesis, 5 mL of 0.2 M Cr(010^)2 in 0.1 M HCIO^, was mixed, under 

nitrogen, with 0.2 mL of the hydroperoxide (typically '^>5 M) . Reaction 

was complete within minutes, and the dark green solution was transferred 

to a carefully deoxygenated column of Sephadex C-25 cation-exchange 

+ + 
resin, in the Na or H form. The column was chilled by circulation of 

ice water through an external jacket. Elution of the products with cold, 

deoxygenated 0.2-0.5 M NaClO^ (in 0.01 M H^) or HCIO^ caused separation 

into four bands—the first was the yellow-to-brown isopropylchromium(III) 

3+ 
ion, followed by blue-grey CriHgO)^ , and lastly, two dimeric forms of 
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Cr(III), one blue-green in color, the other dark green. The organo-

chroinium(III) ion was collected under nitrogen, at 0°C, and stored in 

the freezer to slow decomposition. About 15 mL of 0.015 M 

(CH2)2CHCr(H20)g^^^ was obtained, a 25% yield. 

2,3-Dimethyl-2-butyl hydroperoxide 

This peroxide was synthesized by the method of Hedaya and Winstein 

(69), except no vacuum distillation was used. Analysis for hydro­

peroxide was accomplished by refluxing a sample with excess Nal in 

2-propanol, followed by a thiosulfate titration of the liberated iodine 

(20). Hydroperoxide concentrations of 4.5-5.7 M were obtained; 

theoretical is about 7.5 M. 

Miscellaneous inorganic reagents 

Cr(010^)2 Aqueous solutions were prepared from chromium(III) 

perchlorate in dilute acid, by reduction over amalgamated zinc under 

a nitrogen atmosphere, or from the metal as described in Part III, 

Experimental. 

Fe(C10^)g and Fe(C10^)2 Aqueous solutions of iron(III) 

perchlorate in HCIO^ were made and analyzed by published procedures 

(70). Solutions of iron(II) perchlorate were prepared by reduction of 

iron(III) perchlorate over zinc amalgam, under nitrogen. 

Cu(010^)2 Aqueous solutions were prepared by dissolving the 

solid (G. F. Smith) in dilute HCIO^. Standardization was accomplished 

iodometrically. 
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Co(NH2)^Br(C10^)2 and 00(05^)^01(010^)2 The perchlorate salts 

were obtained from the corresponding bromide and chloride by dissolution 

in room temperature water, with stirring, adding a large excess of con­

centrated perchloric acid, and cooling in ice. 

2+ 2+ 
0r02aq Although perchlorate solutions of OrOg^^ have been pre­

pared by nonradiolytic techniques before (71), experimental details 

were not given. The following procedure proved successful. 

About 25 mL of a dilute solution of Or^^ (2 x 10 ̂  M) in 0.1 M 

was transferred into 75 mL of Og saturated water, using a 16-gauge 

double-tipped needle. The solution was mixed well during addition of 

2+ 
the Cr^^ by bubbling a vigorous stream of Og through. The exit tip of 

the transfer needle must be kept below the surface of the water during 

transfer. Concentrations of (1 - 2) x 10 ̂  M were obtained, as calcu­

lated from its published (71) UV spectrum. 

HgOg Reagent grade, 30% HgOg (Fisher), was used as purchased, 

its molarity determined by reaction with excess iodide ion followed by 

thiosulfate titration of the liberated iodine. 

Reagents for Winkler titration 

Alkaline iodide reagent was prepared by dissolving 20 g NaOH in 

25 mL boiled HgO. Then 45 g Nal were added, dissolved, and the volume 

made up to 100 mL with boiled HgO. 

MnSO^ reagent was made by dissolving 18.2 g MnSO^ in a few mL HgO, 

filtering, and diluting to 50 mL. 

HgSO^ (diluted)—40 mL concentrated HgSO^ were mixed with 60 mL 

HgO. 
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Gases 

Nitrogen (Air Products) was purified of traces of 0^ by passage 

2+ 
through two Cr scrubbing towers, then aqueous sodium hydroxide, and 

aq 

lastly distilled water. Molecular oxygen (99.6%) was obtained from a 

lecture bottle (Matheson Gas Products), 52.5% Og (balance of Ng) from a 

Calibration Standard Grade cylinder (Union Carbide Corporation), and 21% 

Og from the compressed air jet in the laboratory, passing the gas stream 

through glass wool or an air purifier (Koby Inc.) to remove oil. 

HCIO^, NaOH, LiClO^ 

Aqueous solutions of perchloric acid were made by dilution of 70% 

HCIO^ and titrated with standardized NaOH to a phenolphthalein end point. 

Aqueous NaOH solutions were prepared and standardized by published pro­

cedures (72). LlClO^ was prepared by addition of concentrated perchloric 

acid to an aqueous slurry of the carbonate, until no more CO^ was evolved. 

<rhe volume was reduced until crystals of LiClO^ formed, which were col­

lected and recrystallized from water until no longer acidic. An aqueous 

solution was analyzed for the molarity of Li"*" by addition of an aliquot 

to a Dowex cation-exchange column in the H^ form, and titrating the 

displaced acid with NaOH. 
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Methods 

Analyses and characterizations 

2+ 
(CH2)2CHCr(H20)g The isopropylpentaaquochromluni(III) ion was 

identified (20) by its UV-visible spectrum, shown in Figure 1-1. 

Chromium concentration was determined by conversion of an aliquot to 

2— 
CrO^ by hydrogen peroxide oxidation in basic solution, and measuring 

-1 -1 
the absorbance at 372 nm where e „ = 4830 M cm . Molar absorp-

2+ Cr04 " 
tivities for (CHg)2CHCr(H20)g were then calculated for wavelengths of 

maximum absorbance to be (e/M ^cm ^,(X/nm)): 2330, (290); 488, (400); 

and 10, (560) compared to previous values (20) of 1880, (290); 366, 

(399); and 10, (556). The disagreement probably arises from the presence 

of Cr(H20)g^^ in the latter solutions of (CH2)2CHCr(H20)^^"'". 

Organic products Acetone was identified and quantified by gas 

chromatography. Aliquots of the aqueous product solutions were injected 

directly onto either a Tenax or 10% FFAP column at 100 or 150°C with N2 

as the carrier gas, using a 5700 A Hewlett-Packard instrument. Positive 

identification was established on both columns by comparison of the 

elution time to reagent grade acetonej. Aqueous solutions of reagent 

grade acetone were used to construct a standard curve of peak height 

versus concentration, from which the unknown acetone concentrations were 

determined. On the 10% FFAP column, 2-propanol could also be detected. 

Identification and quantification made use of aqueous standard solutions 

of reagent grade 2-propanol. These analyses were obtained with the 

assistance of Mr. J. J. Richard, Ames Laboratory. 
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300 400 500 600 
X/nm 

2+ 
Figure 1-1. The electronic spectrum of the (CH3)2CHCr(1120)5 ion. 

Concentration = 5.8 x 10~^M; cell length = 1 cm. 
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Propane was Identified by its mass spectrum. A solution of 0.01 M 

(CHg)2CHCr(H20)^^^^ was decomposed in 0.1 M HGIO^ under a nitrogen 

atmosphere, by warming in a water bath at 80°C. After the solution had 

turned from yellow to blue, it was attached to a nitrogen line with the 

exit stream leading through a glass U-tube immersed in a liquid nitrogen 

bath. Volatiles from the solution were frozen out in the tube, which was 

closed off by stopcocks and attached to the mass spectrometer. The 

nitrogen bath was removed and the trapped products allowed to vaporize 

into the instrument. The spectrum obtained was compared with authentic 

propane. Mass spectral analyses were performed with the assistance of 

Mr. G. D. Flesch, Ames Laboratory. 

Analysis for alkyl hydroperoxide in the product solution made use 

of a spectrophotometric method developed by Banerjec and Budke (73). 

An aliquot of the products, about 0.5 mL, was diluted to the mark in a 

10 mL volumetric flask with a 2 to 1 mixture of acetic acid, chloroform 

in 4% water, and 5.0 mL transferred to a 2.0 cm cylindrical spectro­

photometric cell. The dissolved oxygen was removed from the cell by 

purging with nitrogen for 3 min. 0.2 mL of fresh aqueous 50% KI, also 

deoxygenated, was added to the cell, and the nitrogen purge continued 

for an additional 3 min. The cell was capped quickly and placed in the 

dark for one hour after which the absorbance of the triiodide species 

was read at 410 nm. 

The analysis was calibrated using a standard iodine solution con­

taining 63.7 yg of iodine per mL, which is equivalent to 4.0 ]Jg of active 
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oxygen^ per mL. The solution was prepared by dissolving reagent grade 

iodine in 2 to 1 acetic acid, chloroform, and diluting 0, 2, 4, 7, and 

10 mL aliquots to 25.0 mL with a 2 to 1 acetic acid, chloroform solvent 

containing 4% water. Each standard was analyzed as described above, 

representing a range in active oxygen concentration of 8-40 yg per 25 mL. 

A molar absorptivity of 5970 (a = 400) M ^cm ^ at 410 nm was calculated, 

-1 -1 
in reasonable agreement with the reported (73) value of 5700 M cm 

Prior to the analysis of the products, the chromate ion formed 

must be removed for it will interfere in the determination. A strongly 

basic, anion-exchange resin, Dowex 2-X8, was used for this purpose; the 

product solution was stirred with an excess of the dry resin, centri-

fuged, and the remaining liquid analyzed. The absorbance at 410 nm 

was corrected for the remaining cationic chromium(III) products. 

Inorganic products The amount of chromate ion formed was deter­

mined by its UV-visible spectrum after dilution to a concentration of 

about 0.1 mM, at acidities of 0.4 to 40 mM HCIO^. Under these circum-

2-
stances, HCrO^ ion is the primary species (74), the amount of CrgOy 

ion arising from Reaction 1-17 can be considered negligible, as well 

2-
as HgCrO^, HCrgOy , and CrO^ , which are unimportant at these acidities. 

2HCr0^~^Cr20^^~ + H2O (1-17) 

Active oxygen is defined as oxygen having a valence of 2 or an 
equivalent weight of 8. In a hydroperoxide only one of the oxygens is 
considered "active." 
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After correction for the absorbance due to the chromium(III) products, 

the concentration of HCrO^ was determined from the absorbance at 350 nm, 

using e = 1528 M ^cm 

Chromium(III) products were identified by their visible spectra, 

after separation by ion-exchange chromatography on Sephadex C-25 resin. 

2_ 
Each band was analyzed for total chromium after conversion to CrO^ , 

as described above, under "(CH2)2CHCr(H20)g^^." 

Products of homolysls Chromium(II) ion, formed by hemolysis, 

was detected as ClCrCH^O)^^^, after reaction with Co(NH2)^C1(010^)2» 

Reaction 1-18. 

h"*" 
Cr^q + Co(NH2)^C1^'*' » ClCrCH^O)^^^^ + Co^^ + 5NH^'*' (1-18) 

III 
With the careful exclusion of O2, 0.029 ramol Co and 0.022 mmol 

(CH2)2CHCr(H20)g^^^ in 0.13 M HCIO^ were placed in the dark at 25°C for 

13 hours. The product solution was then eluted in the air on Dowex 

X8-100 cation-exchange resin in the acid form. Elution with perchloric 

acid allowed a very dilute, pale green band to be displaced; its visible 

spectrum was recorded with a very sensitive absorbance range using a 

Gary 219 spectrophotometer. 

Cobalt(II) ion, produced by Reaction 1-19, was also quantitatively 

analyzed. 

h"*" 

Cr^q + Co(NH3)5Br^"^ » BrCr(H20)5^"^ + Co^^ + 5NH^'*' (1-19) 

Two separate experiments were done. In the first, 0.0595 mmol 

Co(NH3)^Br^'^ and 0.0272 mmol (CH2)2CHCr(H20)5^"^, in 0.148 M HCIO^ were 
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allowed to react 22 hours, and in the second experiment, 0.0635 mmol 

III 
Co and 0.0232 mmol isopropylchromium(III), in 0.128 M HCIO^, for 16 

2+ 
hours. An aliquot of the products was analyzed for Co as described in 

aq 

the Experimental section of Part II. 

Dissolved oxygen At the completion of a kinetic run an aliquot 

of the products was removed for analysis of dissolved oxygen. The 

aliquot was added to a concentration of chromium(II) perchlorate in 

excess of the amount required for the 4:1 stoichiometric reaction of 

2+ 
^aq 
2+ 

Cr and 0^ (75). After formation of the green dimeric chromium(III) 

oxidation product, [Cr(OH)(H20)^]2^'^, the remaining Cr^^ was analyzed by 

2+ 
reaction with a deoxygenated solution of Co(NH„)_Cl . The cobalt(II) 

J 3 
2+ 

ion formed via Reaction 1-18 is equivalent to the amount of excess Cr , 
aq 

and was determined by conversion to Co(SCN)^^ , as described in the 

Experimental section of Part II. 

+ 
When 99.6% 0^ was used to saturate the solutions at [H^O ] = 0.1 M 

and an ionic strength of 1.0 M, maintained by addition of LiClO^, the 

concentration of dissolved oxygen was determined to be (1.05 + 0.11) 

-3 o 
X 10 M at 25 C, an average of 26 determinations. The concentration of 

Og in runs saturated with 52.5% or 20.95% molecular oxygen was calcu­

lated, from the value obtained with 99.6%, by use of Henry's law. 

Equation 1-20, where k is a proportionality constant. 

[0„] = k.p (1-20) 

"2 

The partial pressure of Og was corrected for water vapor at 25°C, using 

Py 0 = 0.031, resulting in values of [Og] = (5.4 + 0.6) x 10~^ M for 
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52.5% Og and (1.9 + 0.2) x 10 ̂  M for 20.95% Og These calculations were 

made for 1 atm barometric pressure. 

Kinetics obtained with spectrophotometry 

Reaction of (CHg)2CHCr(H20)g^^ with 0^ The majority of the 

kinetic data was obtained by following the decrease in the absorbance of 

the organochromium(III) ion with time, at wavelengths in the region 

290-400 nm. The spectroscopic work employed a Gary 14 or Gary 219 

spectrophotometer in which constant temperature was maintained by plac­

ing the spectrophotometric cell in an externally jacketed water bath 

inside the cell compartment. Path lengths of 2 or 5 cm were used as 

2+ 
required by the molar absorptivity of (GHg)2GHCr(H20)2 at the 

monitoring wavelength, and by the initial concentration of the complex. 

A constant concentration of dissolved oxygen was maintained in the 

kinetic runs by leading a water-saturated stream of the gas into the 

spectroscopic cell, through a single-hole rubber stopper, in a narrow 

Teflon needle. By curling the needle towards the cell wall, away from 

the light path, the O2 purge caused no interference with absorbance 

measurements. 

Ionic strength was maintained at a constant concentration, generally 

1.0 M, by the addition of LiGlO^. However, the reaction rate was also 

studied as a function of ionic strength; at very low y, no LICIO^ was 

added and the ionic strength was determined by the concentration of 

2+ 
(GHg)2GHGr(H20)g and the small amount of acid introduced along with 

the organochromlum(III) ion. This acid concentration was determined 
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at the end of each run, by titration with standardized 5 iriM NaHCO^ to a 

bromphenol blue end-point. Since some acid is consumed in the auto-

oxidation, in runs at very low acid the concentration varied during the 

run. The initial concentration, was calculated from Equation 

1-21 which is based on the stoichiometry of the reaction, determined 

+ 
in 0.10 M HgO , and shown to be approximately acid-independent. 

+ I [RCr2+]^ (1-21) 

In Equation 1-21, [H^o"^]^ is the concentration determined by titration. 

The initial ionic strength was calculated from Equation 1-22, 

= "I {6[RCr2+]^ + 2[H^0'^]^ + 12[Cr^'*']^} , (1-22) 

where [Cr^^]^ is the amount of Cr(H20)^^^ introduced along with 

(CH2)2CHCr(H20)^^^, arising from acidolysis. The ionic strength at the 

conclusion of the kinetic run, y^, was calculated from the stoichiometry 

also (determined at 0.10 M H^o"*") ; using the inorganic product yields 

of 70% Cr(H20)g3+, 10% [Cr(0H)(H20)^]2^*, and 10% HCrO^~, Equation 1-23 

results, 

y^ = "I {[RCr^"^]^(3^*(0.7) + 4^.(0.1) + (-1)^(3) (0.7) + 

+ (-1)2(4) (0.1)) + 12[Cr3+]^ + 2[H^o'^]^}, (1-23) 

3+ 
where the squared terms in the summation correspond to Cr^HgO)^ 

(formed upon reaction), [Cr (OH) (H20)^]2^"'", ClO^ , and (ClO^ and HCrO^ ), 

respectively. The difference between y^ and y^ is significant only at 

ionic strengths less than 0.1 M. For kinetic runs at ionic strengths 
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greater than that determined by the chromium species and perchloric 

acid, LiClO^ was added. 

In a typical experiment, the aqueous medium, containing the required 

concentrations of HCIO^ and LiClO^, was brought to temperature in the 

spectrophotometer cell, while saturating with the desired partial pres­

sure of Og. The reaction was initiated by injection of a small amount of 

2+ 
(CH2)2CHCr(H20)^ with a hypodermic syringe, and a recording of absorb-

ance versus time begun and continued until a final, stable value was 

attained. 

The absorbance data were treated according to a three-halves-order 

2+ 
dependence on the (CH2)2CHCr(H20)^ ion concentration. 

The proper relationship for evaluating the data can be obtained by 

integration of a three-halves-order rate law, Equation 1-24, 

, (1-24) 

to give 

. 1 (1-25) 

2+ 
After expressing [RCr as a function of absorbance, D, 

2+ ^^t ^oo) 2+ 
= (D _ D ) 

^ o 00 

and substituting into Equation 1-25, the required equation is obtained. 

<\ - - - i + (D^ -

(1-27) 
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1/2 
As suggested by Equation 1-27, a plot of (D^ - D^) versus 

1/2 
(D^ - D^) t should be linear with a slope given by, 

slope = - "I , (1-28) 

i/o 2+ 
and an intercept equal to (D^ - D^) . Knowledge of [RCr allows 

^obs calculated from Equation 1-28. 

At very low initial concentrations of (CHg)2CHCr(H20)g^^, the data 

must be treated according to a mixed first- and three-halves-order 

2+ 
dependence on [RCr ] because of the acidolysis and hemolysis reactions 

(with rate constants and k^), whose rates are no longer negligible. 

Integration of the revised rate law, Equation 1-29, 

-d[R£^ = (k^ + k^)[RCr^'^] + k^^^[RCr2+]3/2 , (1-29) 

results in a more complex expression for graphical analysis of the data, 

Equation 1-30, 

= (intercept) + (slope)(D^ - 0^)^^^ , (1-30) 

where . 

(^) 
(kh + k,) 

intercept = o. wo , 

(kh + ka) + kobs[KCr ], 

l(kh + k») + kobs[*Cr2+],l/2](D, - D.)l/2 
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The three-halves-order rate constant k , can be obtained from the slope 
obs 

of a plot of versus (D^ - by using Equation 1-31, 

obs 

(slope)(D^ - 0^)1/2 

[RCr2+]l/2[l _ (slope) (D^ -
(1-31) 

1/2 
However, the function a is dominated by the term i!-n[ (D^-D^)/ (D^-D^) ] , 

06 1/2 CL 
so that e is approximately [ (0^.-0^^) / (D^-D_^) ] , and the plot of e 

1/2 1/2 
versus (D^ - D^) amounts to essentially plotting (D^ - D^) against 

itself. Because of this loss of sensitivity to the data, the graphical 

treatment is almost meaningless. A better approach is to fit the 

absorbance at time t, D^, according to two parallel reactions with first-

2+ 
and three-halves-order dependence on [RCr ], and finding the best value 

for by using a nonlinear-least squares computer program.^ The data 

were fit to Equation 1-32, 

D, = (D^ - D_) 
o 00 

+ exp 

<ïh + 

2 

+ , 

exp 
(kh + k^)t 

- 1 

(1-32) 

fixing (k^ + k^) = 2.85 x 10 ̂ s ^ (see Results), and D^, D^, and [RCr^"*"]^ 

at their known values. 

Homolysis and acidolysis The rates of these reactions, under 

nitrogen, were followed spectrophotometrically by programming the Turret 

The program used was one implemented by Dr. R. B. Pfaff, Ames 
Laboratory. 
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assembly of the Gary 219 spectrophotometer. The most reliable data were 

obtained by using Beckman 1 cm spectrophotometric cells which can be 

tightly sealed with Aldrich 210,075-7 rubber septa. The cells, contain­

ing all reagents except the organochromium(III) ion, were thoroughly 

deoxygenated for 20 minutes prior to initiation of the reaction, by 

2+ 
injection of (CHg)2CHCr(H20)^ . During this time, the cells were also 

thermostatted. 

Kinetics obtained with oxygen-sensing electrode 

A few kinetic experiments were conducted using an oxygen-sensing 

electrode^ (Hach Portable Dissolved Oxygen Meter Model 16046). The 

reactants were only saturated with oxygen initially, and the depletion 

of the dissolved oxygen monitored with time by use of an x-y recorder 

(Hewlett-Packard Model 7001 A). To prevent equilibration with the air, 

the reactants had to be sealed from the atmosphere during the reaction. 

The bottom of a small polyethylene bottle was removed so that when 

inverted and slipped over the outside of the electrode housing, a 

reasonably air-tight seal was achieved. With the entire electrode 

assembly inverted, the oxygen saturated LiClO^, HCIO^ reaction medium 

was transferred to the bottle, filled completely and capped. A magnetic 

stirring bar was included to eliminate a concentration gradient in the 

vicinity of the electrode. The assembly was reinverted, magnetic 

2+ 
stirring begun, and (CH2)2CHCr(H20)^ injected with a hypodermic syringe 

1 
Graciously loaned by Dr. D. C. Johnson, Iowa State University. 
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through a septum in a small hole in the side of the bottle. Response 

time of the electrode was 15-30 sec, which severely limited the reaction 

rates which could be measured, and the temperature could not be con­

trolled during reaction. 

The kinetic analysis of the data differed in these experiments, 

where the concentration of Og varied during the run, along with that of 

2+ 
organochromium(III). Since [Og]^ was in slight excess over [RCr and 

2+ 
assuming that the stoichiometry of the reaction is 1:1 (^2^) 5 

to O2, the oxygen concentration at any time is given by Equation 1-33, 

[C^]^ = - [RCr^+]^ + [RCr^"^]^ . (1-33) 

The rate of loss of O2 equals that of the organochromium(lll) ion, 

2+ 
where = [C^]^ - [RCr ]^. Upon integration and rearrangement of 

Equation 1-34, a graphically useful form is obtained, 

"°2lo - - A,)''' - - i kabs<'°2l " 

which suggests a plot of the quantity on the left-hand side of Equation 

1/2 1 
1-35 versus ([Og] - A^) t should be linear with a slope of - g ^obs' 

The oxygen-sensing electrode was calibrated by determination of 

the ©2 concentration using a modified Winkler method (76). A sample 

(40 mL) of air-saturated or 52.5% oxygen-saturated water was transferred 

to a 40 mL glass bottle and stoppered. 0.25 mL MnSO^ reagent and 

0.50 mL alkaline iodide reagent were added to the bottle quickly, the 
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stopper replaced, and the solution mixed by inverting. When the 

precipitate had almost settled, the bottle was reshaken and the precipi­

tate allowed to settle completely. Then 0.60 mL of the diluted sulphuric 

acid was added, the stopper replaced, and the solution again, mixed by 

inversion. After 10 min an aliquot of the sample was titrated with 

0.003 M NagSgOg, which had been standardized using KIO^. Readings were 

made on the oxygen-sensing electrode at the same time; the agreement was 

quite acceptable. By the Winkler method, air saturation at 24.5°C gave 

a concentration of dissolved 0^ of 8.61 mg/L, while the electrode gave 

and average value of 8.63 (cr = 0.21) mg/L. At 52.5% 0^ saturation 

and T = 24.2 + 0.2°C, the Winkler value was somewhat lower, 16.8 mg/L 

compared to the electrode response of 17.3 (o = 0.3) mg/L. 
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RESULTS 

Kinetics of Reaction of (CH2)2CHCr(H20)g^^ with 0^ 

At isopropylchromium(III) concentrations greater than about 0.1 mM, 

and for a dissolved oxygen concentration of 1.05 mM, the kinetic data 

were well fit by a three-halves-order dependence on the concentration of 

the chromium complex, resulting in a rate law of the form, 

^ = k [RCr2+]3/2 . (1-24) 
dt obs 

This rather unusual fractional dependence is convincingly demonstrated in 

Figure 1-2, in which the log of the instantaneous loss of 

2+ 
(CHg)2CHCr(H20)g is plotted against the log of the concentration of 

organochromium(III) at various times of reaction. The relationship 

plotted is obtained from the rate law by taking the logarithm of both 

sides of Equation 1-24, and allowing the differentials to be approxi­

mated by the finite difference A, 

log ^ = I log k^^g + I log [RCr2+] . (1-36) 

Substitution of the expression. 

-(#) [RCr2+] =(-! ^ 1 [RCrZ+j^ , (1-37) 

where D = D/&, into Equation 1-36 results in, 
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Figure 1-2. Log-log plot of the instantaneous reaction raté versus the 
average concentration of the (CH3)2CHCr(1120)5^"^ ion for the 
reaction of (CH3)2CHCr (1120)52+ with O2. Rates and concen­
trations are expressed in absorbance units per 1 cm cell 
length. The plots Include data from four kinetic experiments 
at two wavelengths. [O2] = 1.05 mM; [RCr^+jQ/mM = 0.098 
(open triangles), 2.20 (solid triangles), 0.50 (open circles), 
1.0 (solid circles). Lines are drawn to have a slope of 3/2 
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3 — *  * 3  1 [RCr ] 
= ̂ log (D; _ D.) + ^ log +.| log * : . (1-38) 

—* 

was evaluated as the average absorbance during the time interval At. 

The lines in Figure 1-2 have been drawn to a slope of exactly 3/2, as 

predicted by Equation 1-38 if the concentration dependence of 

2+ 
(CHg)2CHCr(H20)^ is three-halves-order. Data from two wavelengths, 

290 and 400 nm, are presented in the figure, as well as runs differing 

in the initial concentration of (CH2)2CHCr(H20)g^^— 0.10, 0.20, 0.50, 

and 1.0 mM, all with [Og] = 1.05 mM. The fit of the data to the 3/2 

slope is quite reasonable for all the runs indicated in the plot, 

suggesting the three-halves-order kinetics apply to both wavelengths and 

2+ 
are independent of [RCr in the range 0.1-1.0 mM. 

The three-halves-order rate constant, k , , was obtained from the 
obs 

1/2 1/2 
slope of plots of (D^ - D^) versus (D^ - D^) t from Equation 1-39, 

"... • iSÇS ̂ 

The initial organochromium(III) concentration was calculated by dilution 

of a known stock solution, but its value is somewhat uncertain due to the 

slow decomposition of the chromium complex under nitrogen, introducing 

an uncertainty in k^^^. The three-halves-order kinetic plots were 

2+ 
generally linear for 2 to 3 half-lives, at least for [RCr in the 

range '^0.1-1.2 mM. Some typical kinetic plots for experiments at 

1.05 mM Og and four initial concentrations of the isopropylchromium(III) 

ion are shown in Figure 1-3. 
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a) 0.20 mM RCr 
2+ 

b) Q35 mM RCr^ 

*̂ 8 Go 

s 0.6 
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c) 0.51 mM RCr2+ d)070 mM RCr 2+ 
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(OfDjH 
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Figure 1-3, Three-halves-order kinetic plots for the reaction of 

(CH^)2CHCr (H20)52"^ with 1.05 niM O2. Monitoring X = 290 iim; 
cell length = 2 cm 
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While kinetic plots at the three monitoring wavelengths—290, 330, 

and 400 nm—were equally linear, values for k^^^ obtained at the differ­

ent wavelengths were not in agreement—larger at longer wavelength; a 

suggestion for this anomaly is deferred to the Discussion. Values from 

monitoring at 290 nm, where the HCrO^ by-product absorbs relatively 

least, are deemed the best measure of the reaction rate, and are col­

lected in Table 1-1, along with values from 330 nm, at [Og] = 1.05 mM, 

T = 25 + 1°C. The individual values of k^^^ have a rather large error 

associated with them, a phenomenon probably associated with the free-

radical nature of the reaction. However, within the estimated uncer­

tainty, the value of k^^^ shows no dependence on the initial concentra-

2+ 
tion of (CHg)2CHCr(H20)g , further substantiating that the rate law is 

properly defined by Equation 1-24. 

Variation of the concentrations of 0^ arid H^O 

The dependence of k^^^ on the concentration of molecular oxygen 

was assessed by lowering its concentration to 0.54 and 0.19 niM. Again, 

the three-halves-order kinetic plots were linear for 2 to 3 half-lives, 

and the value of k^^^ was independent of the initial concentration of 

isopropylchromium(III). The rate constants obtained at the lower partial 

pressures of Og are listed in Table 1-2. While the reproducibility from 

run to run is again rather poor, it is clearly evident that k^^^ is not 

a function of the oxygen concentration. The interpretation of the data 

is complicated somewhat by monitoring the absorbance at a variety of 
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2+ 
Table 1-1. Rate constants for the reaction of (CH3)2CHCr(1120)5 with 

1.05 mM 0^ at various [RCr^+lJ^ 

A/nM [RCr^^]^/mM ^bbs^^ ̂ ^^s ^ 

290 0.20-0.23 0.46 + 0.04 (3) 

0.30-0.40 0.55 + 0.03 (5) 

0.50-0.58 0.46 + 0.06 (5) 

0.70 0.52 (1) 

0.97 0.40 (1) 

^obs 
= 0.49 + 0.06 (15) 

330 0.43 0.57 (1) 

0.51-0.53 0.72 + 0.09 (4) 

0.70-0.71 0.84 + 0.01 (2) 

0.78-0.84 0.72 + 0.09 (5) 

1.0 0.70 (1) 

^obs 
= 0.73 + 0.09 (13) 

^Uncertainties represent la; number in parentheses is number of 
kinetic runs; [H^0+] = 0.10 M; y = 1.0 N (LiClO^); T = 25 + 1°C. 
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Table 1-2. Rate constants for the 
Og at various [0^] 

reaction of 
2+ 

(CH3)2CHCr(H20)5 with 

[Og]/inM [RCr^'^]^/inM X/nm 
obs 

1.0 0.54 400 0.60 + 0.05 (2) 

0.21 400 0.55 (1) 

0.5 0.54 320 0.65 (1) 

0.21 320 0.54 (1) 

0.3 0.54 320 0.64 + 0.04 (2) 

0.54 290 0.50 + 0.09 (2) 

0.19 290 0.43 + 0.07 (2) 

0.1 0.54 290 0.55 (1) 

0.19 290 

^obs 

0.83 (1) 

= 0.59 + 0.11 (13) 

Uncertainties represent lo; number in parentheses is number of 
kinetic runs; [H^O"*"] = 0.1 M; ̂  = 1.0 M (LiClO^); T = 25 + 1°C 
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wavelengths. However, the average value of (0.59 + 0.11 M 

obtained at 0.54 or 0.19 mM Og and a variety of wavelengths, is in 

reasonable agreement with the values of at 1.05 mM Og, at either 

290 nm (0.49 + 0.06 or 330 nm (0.73 + 0.09 m"^^^s"^) , within 

the uncertainties indicated. 

The effect of acid concentration on the reaction rate was evaluated 

at two different ionic strengths; the data are presented in Table 1-3. 

The rate is unaffected by a change in [H^O ] in the region 0.003 to 

0.10 M. 

Therefore, the complete rate law for the reaction is given by, 

• (1-40) 

Only a few reaction rates were measured using the oxygen-sensing 

electrode because of experimental limitations. Due to the electrode 

2+ 
response time (15-30 s), only low concentrations of (CH2)2CHCr(H20)^ 

could be studied so as to maintain the reaction rate within the capa-

2+ 
bilities of the electrode. Air-saturated solutions, with [RCr = 

0.1 mM, were found to be satisfactory. The electrode was extremely 

sensitive to mechanical shock when a large electrolyte concentration 

was used; therefore, the ionic strength was not adjusted to 1.0 M as in 

the spectrophotometric work. An acid concentration of 0.01 M was also 

used, instead of 0.10 M, to further lower the ionic strength, independent 

work (see above) demonstrating k^^^ is unaffected by [H^O^]. With 

[RCr^^]^ = 0.086 - 0.12 mM, and = 0.26 - 0.27 mM, values for k^^^ 
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2+ 
Table 1-3. Rate constants for tJie reaction of (CH-)„CHCr(H«0)^ with 

Og at various [HgO+] 

[RCr^"^]^/iriM y/mM ^ 

3.0, 3.2 0.58, 0.56 41.9, 43.1 0.276,0.313 

6.7, 6.8, 7.0 0.68, 0.75, 0.72 43.4, 43.4, 43.8 0.310, 0.314, 
0.306 

37.0 0.58 40.7 0.297 

11.7 0.74 1070 0.530 

84.6 0.70 978 0.521 

97.2 0.35 1070 0.577 

= 1.05 inM; T = 25.1 + 0.1°C; monitoring X = 290 nm. 
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of 0.5-0.7 M ^ were obtained at T = 21-22°C, in reasonable agreement 

with the spectrophotometric results at 0.10 M ji = 1.0 M. 

Variation of ionic strength 

The variation of the rate constant for the reaction of 

2+ 
(CH3)2CHCr(1120)5 with 0^ was also investigated as a function of ionic 

strength, for the purpose of determining the ionic charge of the chain-

propagating radical. Knowledge of the charge would help in distinguish­

ing between the two alternative mechanisms, Schemes A and B, as presented 

earlier. The three-halves-order rate constant, k , , is given by a 

composite term of individual rate constants. Equation 1-41 (Scheme A) or 

1-42 (Scheme B), where k^ is the rate constant for homolysis. 

Reaction 1-1. 

Equation 1-41 (and by analogy, 1-42) will be derived in the Discussion. 

Each elementary rate constant of Equations 1-41 and 1-42 was analyzed as 

suggested by Br(j)nsted-Debye-Huckel theory (77-81). Equation 1-43 relates 

the magnitude of the rate constant k for any elementary reaction to the 

ionic strength of the reaction medium. 

k , (Scheme 
obs (1-41) 

k , (Scheme 
obs (1-42) 

log k = log k° + (1-43) 
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Equation 1-43 originates from the theories of Br(j)nsted and Bjerrura, and 

relies on the Debye-Huckel relation, 1-44, 

Z 
-log Y. = fTô , (1-44) 

to express activity coefficients (y) as a function of y. In these 

equations k° is the rate constant at infinite dilution (y = 0), (AZ^^)^ 

is the difference in the square of the ionic charges between the activated 

2 2 
complex, (Z ), and the reactant(s), ZZ. , and a and 3 are physical con-

* i 1 

stants which are functions of temperature and dielectric constant of the 

medium. At 25.0°C, in aqueous medium, a = 0.509 and 3= 3.29 x 10^. The 

quantity a. is an average distance of closest approach of the ions; for 

ions of size 3 X, §a is about unity. When Equation 1-43 is applied to 

the individual rate constants of Equations 1-41 or 1-42, the following 

relationships are obtained: 

(Scheme A) 

log kg - ̂  log(2k^) + Y log 

= log kg° - J log(2k^°) + "I log k^° (1-45) 

(Scheme B) 

\bs = ^6 " J l°8(2k,) + I log k^ 

= log kg° - j log(2k^°) + I log k^° + {[(4)2 - (2)2 - (2)2] 

1/2 
- j [(4)2 - (2)2 - (2)2] + j [(2)2 - (2)2]} . 

1 + y ' 

1/2 
= log kg° - i log(2k^°) + J  log  k^° + —j j 2  (1-46) 
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Equation 1-46 predicts that a plot of log versus ay^^^/(L + 

will be linear with a slope of +4 if Scheme B is operative,^ whereas a 

slope of zero is expected^ if Equation 1-45 (Scheme A) correctly 

describes k , . 
obs 

A study of k^^g as a function of ionic strength in the range 0.004 

to 1.0 M was carried out with [Og] = 1.05 mM, [RCr^"*"]^ = 0.35-0.88 mM, 

at a temperature of 25.1 + 0.1°C, while monitoring at 290 nm. Values of 

^obs collected in Table 1-4 and a plot of log k^^^ versus 

+ Pay^^\ with a = 0.509,and ga = l,is shown in Figure 1-4. It 

can be seen from the figure that k^^^ is roughly independent of ionic 

strength at very low y, over a rather narrow region of 0.004 to 0.034 M. 

However, around y = 0.04 M, an abrupt increase in k^^^ occurs, increas­

ing linearly to y = 1.0 M, with a slope of 41.5. At these high ionic 

strengths, clearly outside the region where Equation 1-43 is valid, this 

result is more likely attributable to medium effects. Especially for a 

scheme such as B, where the bimolecular reactions involve two dipositive 

cations, the validity of equations such as 1-43 have been particularly 

critized at higher ionic strengths (81). Consequently, judgement on the 

effect of y on k^^^ should be restricted to data at very low ionic 

strengths, where it can be concluded from Figure 1-4 that k^^^ has 

approximately no dependence on y, supporting Scheme A, 

^Equation 1-44 is rigorously correct only at y < 0.01 M; to extend 
its validity to higher ionic strengths a term linear in y (77-81) is 
often included, in which case log k becomes a linear function of ^ ̂  
[yl/2/(L+ijl/2) - cy] and with a slope no longer equal to simply (AZ^ ) . 
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2+ 
Table 1-4, Rate constants for the reaction of (CH^)2CHCr(H20)^ with 0^ 

at various ionic strengths^ 

3.3- ,4.0- ... 1.4— 0.40 0.0277- 0.258 + 
3.6 4.4 1.6 0.0317 0.004 (2) 

5.8- 6.7- 3.4- 0.48- 0.0360- 0.259 + 
8.1 9.4 6.0 0.79 0.0450 0.013 (7) 

11.1- 12.3- 8.6- 0.59- 0.0485- 0.257 + 
11.5 12.8 8.9 0.74 0.0517 0.005 (3) 

15.8- 17.4 11.5- 0.80- 0.0568- 0.249 + 
15.9 11.6 0.88 0.0593 0.008 (3) 

23.9- 24.7- 22.3- 0.44- 0.0682- 0.264 + 
25.4 26.2 23.6 0.47 0.0709 0.012 (2) 

32.0- 33.0- 29.7- 0.41- 0.0772- 0.262 + 
32.9 33.6 30.0 0.56 0.0788 0.007 (2) 

40.2- 41.2- 3.0- 0.56- 0.0850- 0.303 + 
43.1 44.4 37.0 0.75 0.0886 0.014 (6) 

74.3- 75.3- 2.9- 0.56— 0.109- 0.335 + 
75.3 76.7 7.0 0.78 0.110 0.01 (4) 

107. 108. 7.5 0.56- 0.125- 0.322 + 
0.62 0.126 0.008 (2) 

173.- 174.- 9.5- 0.69- 0.150 0.340 + 
174. 175. 11.5 0.74 0.002 (2) 

210. 211. 7.4 0.53- 0.160 0.375 + 
0.54 0.160 0.006 (2) 

^Data has been grouped according to ionic strength; kinetic runs 
with very similar p are listed together—each column represents the range 
in concentration, or kg^g within the group. Uncertainties represent la; 
number in parentheses is number of kinetic runs; T = 25.1 + 0.1^0; moni­
toring A = 290 nm. Ionic strengths (Po and Poo) and [H-0+]^ were calcu­
lated from Equations (l-21)-(l-23). 
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Table 1-4. Continued 

1/2 
y^/mM y^/mM [RCr^'*']^/inM °"509y^^ ^^^^^^^-1/2^-1 

254. 255. 32.2 0.75 0.171 0.353 (1) 

317. 318. 11.6 0.70 0.183 0.396 (1) 

565. 566. 9.5 0.69-

0.71 

0.218 0.440 + 
0.015 (2) 

764. 766. 9.5-
9.6 

0.7 0.237 0.505 + 
0.025 (2) 

977. 978. 84.6 0.70 0.253 0.521 (1) 

1070. 1070. 11.7 0.74 0.259 0.530 (1) 

1070. 1070. 97.2 0.35 0.259 0.577 (1) 
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Figure 1-4. Plot of log kq^g versus + W^^5for the reaction 
of (CBL)_CHCr(HnO)c%^^ with 0„. The dashed line has a slope 
of +4 3 2 ^ 2 
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Kinetics at very low[(CHg)2CHCr(H20)^^^^ 

For initial organochromium(III) concentrations less than 0.2 mM, 

Equation 1-32 was used, as described in the Experimental section, to 

obtain values for the three-halves-order rate constant, k , . For runs 
obs 

monitored at 290 nm, with [RCr^"*"]^ = 0.04-0.20 mM, 1.05 mM Og, 0.10 M 

HgO^, y = 1,0 M (LiClO^), and T = 25 + 1°C, an average value for k^^^ of 

0.43 + 0.05 M ^ was obtained, in reasonable agreement with those 

values in Table 1-1, at higher organochromium(III) concentration. 

Radical Scavengers 

Effect of organic scavengers 

The effect of various radical scavengers was investigated to gain 

2+ 
further mechanistic information on the reaction of (CH2)2CHCr(H20)^ 

with Og. Galvinoxyl is an efficient scavenger for both alkyl and 

alkylperoxy radicals (82,83). It is too insoluble in water to be used 

as a scavenger in aqueous medium, so a 65:35 V/V% acetone to water 

solvent was used. In the absence of galvinoxyl, this solvent change was 

shown not to affect the reaction kinetics. Experiments in the presence of 

a very low concentration of galvinoxyl, 1 x 10~^ M, were unsuccessful, 

however, as there appeared to be a direct reaction between galvinoxyl and 

2+ 
(CH^)2CHCr(H20)^ itself. Another scavenger, diphenylamine (43), 

present at the same concentration of isopropylchromium(III), caused an 

interference in the absorption measurements and was not further studied. 
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Effect of miscellaneous metal Ions 

Radical scavengers in the form of metal ions were also investigated. 

Hexaaquocobalt(II), manganese(II), and copper(II) perchlorates at con­

centrations equimolar to that of the organochromium(III) ion had no 

effect on the kinetics of the reaction at 1.05 mM Og. Three-halves-

order rate constants obtained in the presence of these metal ions agreed 

well with the values listed in Table 1-1. 

Effect of Fe^"^ 
m 

However, iron(II) perchlorate, added to the reaction medium 

saturated with 1.05 mM 0^ before injection of the organochromium(III) 

ion, resulted in a remarkable inhibition of the reaction. An actual 

absorbance versus time trace, monitored at 400 nm, is reproduced in 

Figure 1-5. Complete quenching did not occur, as long as the amount of 

2+ 
iron(II) added was less than the amount of (CH^)2CHCr(112©)^ . After a 

very slow, first-order loss in organochromium(III) concentration, 

-4 -1 
k = (4.27 + 0.03) X 10 s , the reaction rate abruptly increased. A 

three-halves-order kinetic plot of the ensuing data was linear, with a 

value for k^^^ of the correct magnitude. The length of time of inhibi­

tion was related to the amount of iron(II) injected, but due to diffi­

culties in reproducibility, this was not quantified. The stoichiometry 

2+ 
of the reaction was about 3-4 Fe(II) consumed per (CH2)2CHCr(H20)^ 

Quenching could be repeated by addition of more iron(II), apparently 

Indefinitely, until all the organochromium(III) ion was depleted. 



www.manaraa.com

O 0.7 

Ln 
O 

400 800 1200 

t/S 
1600 2000 2400 

2+ 
Figure 1-5. Trace of absorbance at 400 nm versus time for the reaction of (CH3)2CHCr(1120)5'" with 

•2 in the presence (open circles) of increments of Fe|^ and absence (solid circles). 
[RCr2+]jj = 0.95 mM; [O2] = 1.05 mM. At the numbered arrows the following concentrations 
(mM) of Fe2+ were injected (the concentration (mM) of RCr^"^ at this point is in 
parentheses?: (1) 0.58, (0.95); (2) 0.28, (0.51); (3) 0.27, (0.29). The lettered 
arrows represent the time at which all Fe2+ has been consumed 

aq 
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2+ 
The dramatic inhibition of the reaction by Fe suggests 

aQ 

the involvement of free-radical intermediates, because it is cer-

2+ 
tainly reasonable to expect either isopropylperoxy radicals or CrOg^g 

to be capable of oxidizing iron(II) ions. Reactions 1-47 and 1-48. 

(CH3)2CH00* + Fe^q ^ (CH^jgCHOO" + Fe^^ (l-47a) 

(CH_) CHOOH + Fe^"*" (CH_),CHO' + FeOH^"*" (l-47b) 

(CH3)2CH0* + Fe^q " (CH3)2CH0H + Fe^^ (l-47c) 

CrO_2+ + SFe^"*" + 4H_0^^ = SFe^* + cr^"*" + 6H-0 (1-48) 
2aq aq 3 aq aq 2 

2+ 2+ 
Alkylperoxy radicals oxidize Co or Mn (44,47) which have more 

aq aq 

negative oxidation emf ' s (-1.808 and -1.51 V, respectively) than 

Fe (-0,771 V) in acidic solution, so Reaction l-47a 
aq 

2+ 
appears likely. Subsequent reaction with Fe will presumably occur via 

aq 

Reactions l-47b and l-47c, in analogy to reactions suggested (84) for 

2+ 
the reduction of jt-butyl hydroperoxide by Fe^^. Three equivalents of 

3+ 
Fe should be consumed for every isopropylperoxy radical. Confirmation 

aq 

of Reaction 1-48 was obtained by injecting iron(II) perchlorate into a 

2+ 
solution of CrOgg^ in 0.1 M HCIO^; the UV spectrum revealed the forma-

3+ 
tion of Fe , and loss of the maximum at 290 nm, characteristic of 

aq 
2+ 2+ 

Cr02aq (71,85,86). A stoichiometry of about 3.2 Fe^ consumed per 

2+ 
CrOg^q was estimated. If the rate of reaction of the chain-propagating 

2+ 
radical with Fe is rapid enough, (Reaction l-47a or 1-48), to compete 

aq 

with attack on (CH3)2CHCr(H20)5^"'", inhibition by Fe^^ is readily 
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explained. The observed consumption of Fe^^ per (CHg)2CHCr(H20)g^^ of 

3-4, rather than a total of 6, implies the rates of Reactions 1-47 and 

1-48 are not competitive. 

2+ 2+ 
The lack of inhibition by low concentrations of Co , Mn , and 

•' aq' aq' 
2+ 

Cu^q may be due to slowness of reaction with the chain-propagating 

radical(s) or unfavorable emf's. 

Effect of high [Cu^"*"] 

Although millimolar concentrations of copper(II) perchlorate did 

2+ 
not interfere with the reaction of (CH2)2CHCr(H20)^ with O2, concen­

trations of 10 to 100 fold greater were found to have a dramatic effect. 

Not only is the rate of reaction slowed considerably, but the form of 

the rate law changes. The kinetics were studied in detail by monitoring 

the decrease in absorbance of the organochromium(III) ion with time at 

400 nm where Cu(II) does not absorb. A concentration range of copper(II) 

ion from 0.02 to 0.40 M was investigated at molecular oxygen concentra­

tions of 0.19, 0.54, 1.05 mM, again maintained constant throughout the 

reaction. All runs contained 0.6-1.0 niM isopropylchromium(III) , in 

0.1 M HgO^, with the ionic strength maintained at 1.0 M, except for 

2+ 
[Cu ] = 0.40 M, where by necessity, y = 1.3 M. The temperature was 

controlled at 25.0 + 0.1°C. 

A pseudo-first-order dependence on isopropylchromium(III) concentra­

tion is seen in the presence of high concentrations of Cu(II), rather 

than the three-halves-order dependence in its absence. Pseudo-first-

order rate constants, k*^" , were calculated from the slopes of 
obs 
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&n(D^ - D^) versus time plots. Values obtained at various [Og], 

[Cu^^]^, and [RCr^^]^ are collected in Table 1-5. 

The dependence of on the concentrations of Cu^"^ and 0„ was 
obs aq 2 

analyzed graphically. Plotting k^^^, obtained at 1.05 iriM Og, versus 

[Cu^^] ̂  resulted in the linear relationship, 

^ob^~^ = (6.46 + 0.69) x lOT* + (4.84 + 0.26) x 10"^[Cu^"^](1-49) 

demonstrated in Figure 1-6. A direct dependence on [Og] was indicated, 

although some scatter in the data points is apparent. From Figure 1-7, 

the relationship, 

= (3.8 + 0.9) X 10"^ + (0.84 + 0.15 [Og],  (1-50) 

was obtained, with the copper(II) concentration maintained constant at 

0.10 M. 

The kinetic effect of high concentrations of copper(II) ion pre­

sented an opportunity to distinguish between Schemes A and B. If 

Scheme A were operative either the isopropyl or isopropylperoxy radicals 

2+ 
must be scavenged by Cu to explain the kinetic results. Much litera-

aq 
2+ + 

ture precedent exists for the reduction of Cu to Cu by alkyl 
aq aq ^ 

radicals. Specifically, for the isopropyl radical, 

Cu^q + (CH3)2CH* ->• Cu^^ + (CH2)2CH+ ,  (1-51) 

the rate constant for Reaction 1-51 has been estimated as 

5.0 X 10^ M ^s ̂  at 57°C in 66% V/V acetic acid/water (87), and 

5.0 X 10^ M ^s ̂  at 25.50q in 44% V/V acetonitrile/acetic acid (88). At 

high concentrations of copper(II), ca. 0.20 M, the apparent rate constant of 
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2+ 
Table 1-5. Rate constants for the reaction of (CH2)2CHCr(H20)^ with 

Og in the presence of 

[Ogj/mM [Cuf+l/M 

0.020 2.89+0.23 

1.05 0.025 2.78 + 0.20 

0.033 2.15 

0.038 1.97 

0.050 1.50 + 0.04 

0.10 1.26 + 0.07 

0.20 0.890 + 0,03 

0.30 0.728 + 0.02 

0.40^ 0.727 + 0.01 

0.54 0.05 1.03 

0.10 0.796 + 0.02 

0.19 0.05 0.780 

0.10 0.676 + 0.04 

0.20 0.589 + 0.01 

0.30 0.65 + 0.08 

0^ 0.10 0.291 + 0.021 

^Uncertainties represent lo from 2 duplicate runs; [H^O ] = 0.1 M; 
y = 1.0 M (LiClO^), except as noted; T = 25.0 + 0.1°C; monitoring 
A = 400 nm. 

= 1.3 M. 

""'Under a atmosphere. 
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Figure 1-6, Plot of versus [Cu^^] ̂  at [0^] = 1.05 mM, for the reaction of (CH^)^CHCr(H2O) 

with Og in the presence of Cu2+ 



www.manaraa.com

1.2 
U) 

or 
D -Û 

rO 
O 

Figure 1-7. 

0.8 

0.4 

1 
1 

1 
1 

1 

— 

— 

o 

— 

) 

- I 1 1 1 1 

0 1.2 

Plot of versus [C^] at [Gu ] = 0.10 M, for the reaction of (CH^)' 

with Og in the presence of Cu2+ 
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Reaction 1-51 will be (1 - 10) x 10^ s or rapid enough to compete with 

millimolar 0^ for the isopropyl radical, Reaction 1-2 (kg 'v- 1 x 10^ M ^ 

(47)) and inhibit the chain reaction. Oxidation of Cu^^ by (05^)20^00 

3+ 
to Cu can be disregarded on the basis of thermodynamics. 

2+ 
However, if Scheme B is the correct mechanism, either Cr^^ or 

2+ 
^^^2aq be capable of being scavenged by copper(II) ion. The 

+ 
reduction of copper(II) by chromium(II) ions is too slow in 0.1 M H^O 

2+ 2+ 
to compete with the formation of For example, with [Cu ] = 

0.20 M and [H^o"*"] = 0.10 M, the apparent rate constant for reduction of 

copper(II) ions is 1.21 s ^ at 24.6°C, y = 1.00 M (89), compared to 

1.6 X lO^s ^ for Reaction 1-5 (k^ = 1.6 x 10® M ^ (71,85,86)). The 

2+ 2+ 
reactivity of Cu^g toward CrOg^g was investigated by comparing the UV 

spectrum before and after addition of copper(II) perchlorate to a 

2+ 
solution of CrOg^q at pH 2. Clearly, no reaction occurred—the final 

2+ 
spectrum consisted of the sum of the individual spectra of Cu^g and 

2+ 
CrO„ . Therefore, Scheme B can be eliminated from further consideration. 

laq ~ 

Products of Reaction of (CH2)2CHCr(HgO)^^^ with 0^ 

Acetone and 2-propanol were the only organic products detected. 

Their yields, reported as a percentage based on the starting concentra-

tion of (CH2)2CHCr(HgO)^ , were studied as a function of [HgO ], and 

are reported in Table 1-6. There is a slight dependence of the yields 

of both products on the acidity. Acetone production parallels the 

increase in [H^O^], while 2-propanol decreases, so that their sum 

remains constant. 
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Table 1-6. Percent yields of acetone and 2-propanol produced in the 

reaction of (CHgïgCHCrCHgO)^^^ with 

% CHgCOCHg % CHgCHOHCHg 

0.002^ 57.7 + 1.4 28.3 + 1.6 

0.01 66.8 + 0.4 24.1 + 0.1 

0.10 69.0 18.9 

0.10^ 75.4 -

o.iof 70.8 

^Uncertainties represent la of duplicate injections; [RCr ]q = 
0.45-0.65 mM; 1.05 mM O2; y - 0.5 M+ [HgO+l; T = ambient; FFAP column 
used, except as noted. 

^Approximate [HgO^] used to elute (CHg)2CHCr(H20)g^^^ from ion-
exchange column. 

^Tenax column. 
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Essentially no hydroperoxide could be detected in the product solu­

tions, after correcting for residual active oxygen (presumably traces 

of (CHg)2CH(CH2)2C00H from the synthesis) in the (CHg)2CHCr(H20)g^^^ 

ion's stock solution. The analyses were further hampered by the large 

uncertainty introduced when the absorbance of at 410 nm was corrected 

for the amount of Cr(III) present, because the numbers were of similar 

magnitude. 

The percent yields of HCrO^ , CrCHgO)^^^, and [Cr(OH)(H20)^]2^^ ions 

are summarized in Table 1-7. Only the yield of hydrogen chromate was 

studied as a function of [H^O^]. From 0.011 to 0.90 M H^o"*" it decreases 

by 28%. 

Kinetics of Homolysis and Acidolysis 

Under a nitrogen atmosphere, with the strict exclusion of molecular 

2+ 
oxygen, the decomposition of (CHg)2CHCr(H20)g in aqueous perchloric 

acid is a consequence of both homolysis and acidolysis. Reactions 1-52 

and 1-53, respectively. 

(CH3)2CHCr(H20)5^'^ ̂  (^3)2^* + Cr^^ (1-52) 

h 

le 

(CH3)2CHCr(H20)g2+ + H^o"*" = CHgCHgCHg + Cr(H20)g3+ (1-53) 

Reaction 1-52 is written as an equilibrium where the forward reaction, 

homolysis, occurs with a rate constant k^, and the back reaction, by 

2+ 
which (CH3)2CHCr(H20)g is made, has a rate constant designated k^. 
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Table 1-7. Percent yields of HCrO^-, Cr(H2O)03+, and [Cr(OH) (H^O)^]2'^'^ 

produced in the reaction of (CH2)2CHCr(H20)^^^ with 0^ 

[H^0''']/M % HCrO^~ % CrCHyO)^^* % [Cr(OH) (H20)^]2^"^ 

0.011 12.9 (1) 

0.10 12.6+2.6 (8) 70.1+8.3 (5) 10.1+1.2 (5) 

0.50 10.0 + 0.5 (2) 

0.70 9.8 + 1.6 (4) - -

0.90 9.3 + 1.8 (2) 

^Uncertainties represent la; numbers in parentheses indicate 
number of analyses; [RCr^+jg = 0.01-0.02 M; 1.05 mM O2; 
y - 0.5 M + [HgO+]; T = ambient. 
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The kinetics of acidolysis were not studied in detail, so the mechanism 

is not known. However, the rate of acidolysis has no dependence on the 

acid concentration in the region [H^O ] = 0.05-0.17 M, and consequently 

Reaction 1-53 is not an elementary reaction. 

By addition of a variety of reagents in separate experiments, the 

individual values for k^ and k^ may be obtained. In the presence of an 

2+ 
oxidant, reactive towards Cr ion and/or the isopropyl radical, the sum 

aq 

of the rate constants of homolysis and acidolysis will be measured. The 

oxidant serves to scavenge (29) one or both products of homolysis, 

effectively eliminating the back reaction of 1-52. Oxidants such as 

iron(III) or copper(II) ions, and acidopentaamminecobalt(III) complexes, 

are useful for this purpose. In the presence of one of these species, 

the experimentally measured rate constant will be, 

•'obs - kh + ka ' (1-54) 

However, if the kinetics of decomposition are measured in the presence 

2+ 
of a millimolar concentration of Cr ion, homolysis will be suppressed 

aq 

because the rate of the back reaction of 1-52 will be quite fast (25), 

ky[Cr^^] - 10^ - lO^s The observed rate constant is then identified 

with k^, 

"obs = \ • (1-55) 

the rate constant of acidolysis. 

The rates in the presence of oxidants or chromium(II) ion were 

obtained by following the decrease in absorbance of the organochro-

mium(III) ion with time at 400 nm where the other complexes have minimal 
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absorbance. Values of k , were obtained from plots of &n(D^ - D^) 
ODS C 

versus time, which were linear for at least three half-lives. The rate 

constants are collected in Table 1-8. 

The rates in the presence of iron(III) perchlorate are faster than 

with copper(II) ion or the cobalt(III) complex, and also depend on the 

3+ 
concentration of Fe^^. The rate should be independent of the oxidant's 

concentration, hence there appears to be a direct reaction between 

Fe^^ and (CH_)„CHCr^^.^ The rates in the presence of the cobalt(III) 
aq j z aq 

complex are reasonably independent of its concentration, except at the 

lowest, for which an explanation is not available. The rate of homolysis, 

plus acidolysis is probably best given by the average of the values at 

higher [Co(NH2)gBr^^], 3.7-9.6 mM, and for Cu^^ scavenging, with 

kobg = (2.85+0.10) X lOT^s'l. 

-4 -1 
The rate constant for acidolysis, k^ = (1.067 + 0.008) x 10 s 

2+ + 
obtained in the presence of Cr^^, was not obtained at 0.1 M H^O , as in 

the above work, but at 0.05 M. Additional experiments (90) at 0.17 M 

have established that the rate has no dependence on [H^O^] in the 

region 0.05-0.17 M, not unexpected as the rate of acidolysis of 

2+ 
n - CgHyCrCHgO)^ is largely acid-independent (16). Using 

—A —2^ 
k^ = 1.067 X 10 s , the value of k^ obtained from Equation 1-54 is 

(1.78 + 0.11) X 10~V^. 

An Fe -dependent pathway has been detected for difunctional com­
plexes of bfi(benzylchromium) cations (5). 
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Table 1-8. Rate 

(CH3) 

constants obtained for the decomposition of 

gCHCrCHgO)^^^ under 

Species present [species]/M [RCr^+j^/mM lo\/s~^ 

0.10 0.98 4.56 + 0.26 (2) 

0.050 0.98 3.98 + 0.02 (3) 

< 0.10 0.93 2.91 + 0.21 (2) 

Co(NH2)^Br2+ 0.0096 0.93 2.862 + 0.007 (4) 

0.0048 0.88 2.80 + 0.13 (3) 

0.0037 0.88 2.87 (1) 

[0.0024 1.1 3.17 + 0.02 (4)f 

aq 
0.0038 1.0 1.067 + 0.008 (4) 

^Uncertainties represent la ; number in parentheses is number of 
kinetic runs; [H3O+] = 0.10 M, except as noted; y =1.0+ 0.05 M (LiClO^); 
T = 25.0 + O.ioc, except as noted; monitoring X = 400 nm. 

= 24.7°C. 

c „ 
See text. 

= 0.05 M. 
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Products of Hemolysis and Acidolysis 

In addition to the kinetic evidence for homolysis, product studies, 

2+ 
designed to detect Cr^^, were carried out. Decomposition in the presence 

of Co(NH2)^Cl^^ (under N^) should produce ClCrCHgO^)^^^ and cobalt(II) 

ion if homolysis is important. 

H+ 

Cr^^ + Co(NH,).Cl^"^ » ClCr(H_0)c2+ + co^"*" + (1-18) 
aq j J / 3 aq 4 

2+ 
In the experiment constructed to observe ClCr , (see Experimental) 

aq 

maxima at 428 and 609 nm in the visible spectrum, with an intensity 

ratio of 1.20:1, confirmed its presence. 

2+ 
In other experiments the amount of Co ion formed via Reaction 1-19 

aq 
2+ 

was quantified, using Co(NH2)^Br as the oxidant. Two separate deter­

minations were examined, the results of which are reported below. 

mmol RCr^^ mmol Co^^ (analyzed) mmol Co^^ ("expected") 
o aq aq 

0.0272 0.0349 0.0169 

0.0232 0.0315 0.0144 

2+ 
The mmol Co ("expected") were calculated from the kinetic data. Since 

aq 
2+ 

only homolysis leads to Co ion, the fraction of isopropylchromium(III) 
aq 

which reacts by this pathway is given as, 

so mmol Co^q "expected" = 0.624[RCr ]^. However, it is apparent twice 

2+ 
as much Co was produced than calculated, 2.06 or 2.19. This implies 

aq 
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2+ 
the Isopropyl radical is also being oxidized by Co(NHg)gBr , accounting 

2+ 
for the additional equivalent of Co^^. Therefore, the kinetic results 

appear to be in good agreement with the product analysis. 

The only products detected from acidolysis of ̂  0.01 M 

(CHg)2CHCr(H20)g^^ in 0.10 M were propane and CrCHgO)^^^. Acetone 

or other low molecular weight organic compounds were not present. 
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DISCUSSION 

Scheme A is the preferred reaction mechanism for the autoxidation of 

2+ 
(CH3)2CHCr(1120)5 . Scheme B was eliminated because of the inability to 

2+ 
explain the effect of high concentrations of Cu on the kinetics, and 

aq 

the absence of a large ionic strength dependence on . Another 

mechanistic scheme might be considered, and will be presented after a 

thorough discussion of the individual reactions in Scheme A, reproduced 

below. 

Scheme A: 

k 
Initiation: ^, h . 0 +  

( C H 3 ) 2 C H C r ^ ^ — ( 1 - 1 )  

Propagation; k^ 

(CH3)2CH* + 0^ » (CH3)2CH00" (1-2) 

kg 

(CH^ygCHOo' + (CH3)2CHCr^q » (CH3)2CH00CrJ^ 

+ (CH3)2CH (1-3) 

Termination: 

. ̂ 4 
2(CH3)2CH00 » (CH3)2C0 + (CH3)2CH0H + Oj (1-4) 

Initiation occurs by homolysis of isopropylchromium(III), 

Reaction 1-1, to form the isopropyl radical and chromium(II) ion. 

2+ 
Homolysis, while a rather inefficient process for (CH3)2CHCr(H20)g , 

nonetheless proceeds with a rate constant of 1.78 x 10~^s~^. Both 

homolysis products are known to react very rapidly with molecular oxygen. 
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-1 -1 
The isopropylperoxy radical is formed with a rate constant of kg/M s 

9 2+ 
- 1 X 10 (47); likewise the formation of CrOg^g occurs with a rate 

constant of (1.6 + 0.2) x 10 M s (71,85,86), measured by pulse 

radiolysis. The second propagating reaction is the subsequent attack of 

the peroxy radical on the isopropylchromium(III) ion, releasing an 

isopropyl radical. Reaction 1-3, and forming an (unstable) isopropylper-

oxochromium(III) ion. The isopropyl radical continues the chain reaction 

by Reaction 1-2. 

Termination of alkylperoxy radicals via the bimolecular Reaction 1-4 

is well established, although the mechanism is still somewhat doubtful. 

In the Russell Mechanism (91) the self-reaction of secondary (and pri­

mary) alkylperoxy radicals is theorized as involving the decomposition 

of a tetroxide, formed in a cyclic transition state. Transfer of an 

a-hydrogen atom from one radical to the a-oxygen of the other results in 

the formation of ketone (or aldehyde), alcohol, and an oxygen molecule. 

For isopropylperoxy radicals, the rate of termination hais been measured 

only in hydrocarbon solvents, where a value of 2k^/M ^s ^ = 3 x 10^ was 

reported (92). 

The rate law derived from Scheme A can be shown to be in agreement 

with that obtained experimentally. Equation 1-24. The isopropylchro-

mium(III) complex disappears by two pathways. Reactions 1-1 and 1-3, 

which defines the rate law as (k^ = k^), 

"'^^dt^^ = k^jRCr^+j + kg[RCr^"^][R00'] . (1-56) 
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If the steady-state approximation is made for the free-radicals, R and 

ROO , as a consequence, the rate of initiation must be equal to the rate 

of termination, 

k^[RCr2+] = 2k^[R00*]^ ^ . (1-57) 

From Equation 1-57, the steady-state concentration of the peroxy radical 

can be obtained in terms of the concentration of the organochromium(III) 

ion, 

1/2 

[*00 Is.s. 

k^[RCr2+] 

(1-58) 

which is substituted into the rate law. Equation 1-55. The assumption 

of long chains reduces Equation 1-56 to the experimentally observed form. 

This approximation states that the major pathway by which 

(CH2)2CHCr(H20)^^^ reacts is via the propagation step, and not initiation 

(homolysis), k^ERCr^"*"] [ROO ] » k^[RCr^^], giving the following rate law, 

The experimental rate constant, k , , is identified with the individual 
DOS 

rate constants, 

1/2 

(4) ^obs = k]! I . (1-41) 

The chain length or efficiency of the propagating steps is defined as 

the rate of reaction divided by the rate of initiation. 
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3/2 1/2 
k , ̂[RCr^^] k , [RCr ] 

chain length = — = —S—^ . (1-60) 
k^[RCr2+] \ 

It is dependent on the concentration of organochromium(III) so decreases 

continually throughout the reaction. Typical values are 90 at 1 x 10~^M 

(CH3)2CHCr(H20)5^^ and 64 at 5 x 10 justifying the long chain approx-

2+ 
imation for about 90% reaction. However, at very low [RCr ], the chain 

length will drop substantially and a mixed first- and three-halves-order 

dependence on organochromium(III) is predicted. Also the rate of 

2+ 
acidolysis will no longer be negligible at very low [RCr ], so the 

rate law will change form somewhat, 

2+ "i/9 

"""dt ' - . (1-29) 

2+ -5 
For [RCR = 5 x 10 M, a chain length of only 20 is calculated, and 

2+ 
the contribution of the term first-order in [RCr ] to the loss of 

organochromium(III) is 

(2.85 X 10 )(5 X 10 ) X 100 = 7.3%, 

(2.85 X 10"^)(5 X 10~^) + (0.51)(5 x 10~ ) '^ 

at the start of the reaction, increasing to 13.6% after two half-lives. 

Therefore, it is apparent a simple three-halves-order treatment of the 

data is not sufficient at these low isopropylchromium(III) concentrations, 

as was seen experimentally. 

The second propagating step. Equation 1-3, deserves further dis­

cussion. This reaction involves the homolytic attack of the isopro-

pylperoxy radical on the chromium center in a reaction classified as a 
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blmolecular homolytic substitution, or S„2 reaction (40). In more 
H 

general terms, an S^2 reaction involves attack of a radical X on a 

molecule YZ, displacing Z , while forming a new bond between X and Y. 

X + Y - Z ̂  [X. ..Y...Z] + X - Y + Z (1-61) 

Hydrogen-abstraction is the simplest and most common type of radical 

displacement reaction; the autoxidation of organic compounds involves 

hydrogen-abstraction by peroxy radicals in a chain-propagating step 

(see Introduction). 

ROO* + H - R ROOH + R* (1-62) 

Radical displacement by peroxy radicals at a multivalent center is 

more rare, although there are a few authentic examples. In particular, 

in the autoxidation of organoboranes to organoperoxyboranes, it is now 

widely held (49-59) that a free-radical mechanism is operative, in which 

the rate-controlling, chain-propagating step is an 8^2 displacement by 

ROO on the boron center, 

/ / 
ROO* + R - B > ROOB + R* . (1-63) 

\ \ 

Evidence (49-59) for this reaction type is supported by stereochemical 

arguments, the ability to scavenge radical intermediates with powerful 

inhibitors, and ESR studies. Rates for Reaction 1-63 have been deter-

3 
mined for several R groups, with values for k^^ ranging from 1 x 10 to 

1 X lO^M ^s ̂  (56,57,59). Likewise, the autoxidations of Grignard 

reagents (93) and organometallic compounds of zinc, cadmium, aluminum, 

and tin (94) can be explained in terms of a 8^2 attack at the metal. 
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Studies involving similar reactions with organometallic compounds 

of the transition metals are quite scarce (40). A reaction analogous 

to 1-63 was presented for the formation of unstable organometallic 

peroxides of alkyltitanium, -zirconium, and -dimolybdenum, and -tungsten 

compounds (58). 

2+ 
The rate of 8^2 displacement at (CH2)2CHCr(H20)g can be estimated 

from the kinetic data. From Equation 1-41, 

6 ,1/2 

. 0.51 ( * 1° ,) 

Vl.78 X 10 ' 

Ix - 1  - 1  
= 6.6 X 10 M s . 

This rapid a substitution reaction at chromium(III) is highly unusual. 

For example, the aquation of acidopentaaquochromium(III) complexes, 

2+ 
XCr(H20)g , proceeds (95) by the following first-order rate constants 

at 25.0°C (k/s"^, X): 5.14 x lO"^, Br; 1.10 x lO'^, I; and 7.35 x 10~^, 

NOg. The mechanism for aquation of these complexes is believed (96) to 

be an associative interchange (I^) substitution. The alkyl group of 

the organochromlum(III) complexes is known to labilize the trans-water 

to a large extent (97,98) which suggested the possibility that the 

isopropylperoxy radical may attack at this vacant position, eliminating 

the need to invoke a seven-coordinate transition state. 
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K/ 
9-4-

RCrCHgO)^ RCrCHgO)^ + H^O (1-64) 

^-64 

k,^ 
O I g o3 A , 

RCrCHgO)^ + ROO ^ ROOCrfHgO)^^^^ + R (1-65) 

(very fast) *2° 

R00Cr(H20)^^'*' 

The rate of incorporation of SCN into the coordination sphere of 

2+ 
(CHg)2CHCr(H20)^ was measured (98) to determine the feasibility of a 

reaction scheme such as Reactions 1-64 and 1-65. For Reaction 1-66, 

(CH2)2CHCr(H20)^^''" + SCN" -»• (CH3)2CHCr(H20)^SCN"*" + H2O, (1-66) 

a second-order rate constant of only 1.25+0.02 M ^ at 25.0°C was 

calculated, far less than the rate required for S 2 attack by 
n 

(CH2)2CH00 , thereby eliminating a dissociative-type mechanism. One 

must conclude, therefore, from the available data that substitution 

occurs via a seven-coordinate intermediate, or by an associative 

mechanism, as postulated (see earlier) for other chromium(III) complexes. 

Supportive of this assignment is the reduction of cobalt(III) and 

ruthenium(III) complexes by hydroxyalkyl radicals. The mechanism is 

believed (99-102) to proceed by an inner-sphere electron transfer 

process, although there is disagreement (102) on the intimate mechanistic 

details. These reactions are very rapid; second-order rate constants of 

10^-10^ M ^s ^ are common (101), although it is possible direct attack 

J 
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3+ 
at the metal center is occurring only for Ru(NHg)g (101), and 

hydroxyalkyl radicals reduce Co(III) complexes via a ligand-bridged 

intermediate (101,102). Further study of the S 2 reactions of other 
H 

alkylperoxy radicals with organochromium(III) is necessary to formulate 

a more complete mechanism. 

For the sake of completeness, another scheme for the autoxidation of 

2+ 
(CH2)2CHCr(H20)^ ought to be considered. Abstraction of the hydrogen 

atom from the a-carbon of (CHg)2CHCr(H20)g^* by (CH2)2CH00 would lead 

to (CH2)2CH00H and an alkyl radical-chromium(III) complex. 

CH3 CH3 

(CH-),CHOO* + H —C — Cr^^ -> (CH_)_CHOOH + 'C—Cr^"*" (1-67) 
<j ^ 3.Q j 6 â.Q 

CH^ CHg 

It is possible this species may mimic the reactivity of alkyl free-

radicals towards Og, 

CH3 CH3 

1 2+ . I 2+ 
'Ç - Cfaq + O2 - O-O-C-Cr^q , (1-68) 

CH3 CH3 

forming a peroxychromium(III) ion which subsequently abstracts a hydro­

gen atom from another isopropylchromium(III) ion, 

CH3 CH3 CH3 CH3 

• I 2+ I 2+ I 2+ 2+ 
0-0-C-Cr + H-C-Cr ->• HOOC-Cr + C-Cr , (1-69) 

I aq I aq | aq | aq 

CH3 CH3 CH3 CH3 
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2+ 
releasing •C(CH2)2Cr^^ to continue the chain-reaction via Reaction 1-68. 

In order for this scheme to give the experimentally observed rate law, 

only Reactions 1-68 and 1-69 can be the chain-propagating steps, and a 

new termination reaction must be operative, 

CH3 

2 0-0-C-Cr > nonradical products , (1-70) 
I aq 

CH3 

The i.ri ùacLs expected from such a scheme must derive from 

H00C(CH3)2Cr(H20)^^^. Reaction with could conceivably produce the 

3+ 
ultimate products of acetone and Cr(H.O), 

/ D 

However, there is a serious problem with such a scheme. Peroxy 

radicals are comparatively unreactive, and hence rather selective hydro­

gen abstractors (47). Abstraction of even allylic or benzylic hydrogen 

is quite slow—for example, abstraction from cumene by the cumylperoxy 

radical has k/M ^s ^ = 0.18 at 30°C (103). Rates are also affected by 

polar and steric factors, increasing with substitution of electron-

donating groups and with less steric bulk on the substrate and peroxy 

radical. Because the a-H of the isopropyl ligand is a secondary 

hydrogen, in addition to its close proximity to the bulky, electro­

positive chromium(III) center, the rate of abstraction should be quite 

slow, several orders of magnitude less than the measured rate constant 

4 -1 -1 
of ca.lO M s . Surely it is unlikely that hydrogen abstraction by the 

2+ 
'00C(CHg)2Cr(H20)^ ion would be any more favorable, so this scheme is 

eliminated. 
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2+ 
'aq 

be made from the kinetic results obtained in its presence. The slow 

An estimation of the rate of oxidation of Fe^ by (CH2)2CHOO can 

first-order loss in isopropylchromium(III) measured in the presence of 

Fe^q, is faster, k = (4.27 + 0.03) x 10 than just homolysis and 

-4 -1 
acidolysis, (k^ + k^) = 2.85 x 10 s . If the propagating step, 

2+ 
Reaction 1-3, was eliminated by Fe , then the rates should be equal; 

aq 
24-

the fact that they aren't implies Fe is not completely effective in 
aq 

scavenging the chain-propagating radical. Since the concentrations of 

2+ 2+ 
Fe^q and (CHg)2CHCr(H20)^ were of similar magnitude in the kinetic 

runs, each must react with a similar rate towards the peroxy radical. 

Hence, the rate of oxidation of Fe^^ by (CHg)2CH00 , Reaction 1-47, 

must be about lO^-lO^M ^s 

2+ 
The kinetic effect of high concentrations of Cu follows directly 

aq 

from Scheme A, when an additional termination step, Reaction 1-51, is 

included. 

2+ 
Scheme A in the presence of Cu : 

~ aq 

(CHg)2CHCr^^ ̂  (^3)2^* + (1-1) 

(CH2)2CH* + Og + (CHgigCHOo' (1-2) 

(CH2)2CH00* + (CH3)2CHCr^^ ->• (CH2)2CHOOCrJ^ + (CH2)2CH' (1-3) 

2(CH_)2CH00' ̂  CH^COCHg + GH^CHOHCH^ + Og (1-4) 

(CH„)„CH* + Cu^"*" (CH_)_CH+ + Cu"*" (1-51) 
j / aq j z aq 
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Because Reaction 1-51 is a much more effective termination step (at 

2+ 
high [Cu ]) than the bimolecular reaction of isopropylperoxy radicals, 

aq 

Reaction 1-4 may be considered unimportant. The rate law can be derived 

by making the steady-state approximation for the free-radicals, from 

which it follows that the rate of initiation is equal to that of 

termination (k^ ̂  k^), 

k^ERCr^+l = k;^[R',g^g^[Cu2+] . (1-71) 

The steady-state concentration of isopropylperoxy radicals is given by. 

[ROO ] 
s. s. 

k^fRCr^+j 
(1-72) 

which, after substitution of [R ^ derived from Equation 1-71, 

simplifies to, 

[ROo'] 
s.s. 

k3k^^[Cu^+] 

(1-73) 

2+ 
The rate law in the presence of Cu^^ becomes. 

-d[RCr^"*"] ^ 
dt (kh + ka) + 

k5^[Cu2+] J 

2+ 
[RCr^+] (1-74) 

where the rate constant for acidolysis has been included for these slow 

reactions. The experimentally obtained rate constant is then identified 

as, 

Hi^2'-°2^ 
ko:s = (kh + k») + 

ksi[Cu2+] 
(1-75) 
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Equation 1-75 predicts that a plot of versus [Cu^"*"] ^ at 

constant [Og] should be linear, as was confirmed experimentally. 

Figure 1-6. The slope of this line is equal to k^k^fOgl/k^^ with an 

intercept equal to (k^ + k^). An estimation of k^^ can be obtained 

from the slope since k^ is known, and an approximate value for kg exists; 

^ ^ (1.78 X 10"^) (~1 X 10^) (1.05 X 10~^) 

Si - (slope) - X 10-5 

- 3.9 xlO^M~^s~^ . 

The intercept from Figure 1-6 is (6.46 + 0.69) x 10 ̂ s or about two 

times larger than the value measured independently for (k^ + k^), 

-4 -1 
2.85 x 10 s , not unreasonable agreement. 

Similarly, from Equation 1-75 a plot of k^" versus [0„] at a 
obs / 

2+ 
constant Cu^^ concentration should be linear, with a slope, (k^kg)/ 

2+ 
(k^^[Cu ]), and intercept (k^ + k^). From Figure 1-7, k^^ is estimated 

as, 

•» • 

similar to the value obtained from Figure 1-6. Both estimates are in 

good agreement with the rate constants estimated by other workers— 

5.0 X lO^M ^s ^ at 25.5°C in 66% V/V acetic acid/water (87) and 

5.0 X lO^M ^s ^ at 25.5°C in 44% V/V acetonitrile/acetic acid (88). The 

sum of k^ and k^, from the intercept of Figure 1-7, is (3.8 + 0.9) 

-4 -1 
X 10 s , in good agreement with the independently obtained value. 
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The major products of the autoxidation reaction—acetone and 

3+ 
—can be readily explained as the products of a rapid reaction 

of the isopropylperoxochromium(III) ion. 

(CH2)2CH00Cr(H20)^2+ + = (CH^igCO + Cr + H^O (1-76) 

In addition, some acetone will be produced by the termination of two 

isopropylperoxy radicals. The analogous isopropylperoxocobaloxime 

reacts via two parallel reactions in aqueous perchloric acid to form 

acetone and isopropyl hydroperoxide in a 42:58 ratio (104). Acetone 

was accounted for (104) by 0-0 bond-cleavage accompanied by breakage 

of the a-C-H bond of the isopropyl ligand. Isopropyl hydroperoxide 

arises from 0-Co bond-cleavage, assisted by proton transfer from an 

oxime oxygen to the a-O-atom of the peroxo linkage (104). Since an 

internal proton transfer mechanism is precluded for the decomposition 

of the peroxochromium complex, the absence of isopropyl hydroperoxide 

may result from the inability of a free proton to assist in 0-Cr bond-

breaking, at a rate competitive with acetone formation via 0-0 bond-

cleavage. 

The small amount of 2-propanol produced can conceivably be formed 

from two sources—the termination reaction, 1-4, and an internal redox 

reaction of the isopropylperoxochromium(III) ion, acting in competition 

to protonolysi.s, 

(CH2)2CH00Cr(H20)g^* = (CH2)2CHOH + H2CrO^~ + SH"*" + ZH^O. (1-77) 

Formation of chromium(V) is suggested as the oxidation product because 

reduction of the isopropylperoxo ligand to 2-propanol requires a 
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two-electron transfer from chromium(III). Reaction 1-77 is analogous 

to processes suggested for CrO^H^^ (105) and FeOgH^^^ (106), 

Cr02Ĥ "'" + HgO HgCrÔ " + SH"*" , (1-78) 

FeO^H^"^ -> FeO^^ + 0H~ , (1-79) 

in which Cr(V) and Fe(V), respectively, are the oxidation products. 

The ultimate fate of Cr(V) is too complex in such a system to predict, 

although it is possible oxidation of 2-propanol may produce acetone and 

Cr(H20)^3+ (107). 

(CH3)2CH0H + H^CrO^" + 4H'*' + 25^0 = (0^^)200 + Cr(H20)^3+ (1-80) 

If this is the case, the termination reaction is the only source of 

2-propanol. The slight dependence of the yields of acetone and 

2-propanol on [H^O^] probably means the rate of Reaction 1-76 (or 

1-80, possibly) is acid-catalyzed in order to explain the decreased 

yield of acetone at lower acid concentrations, accompanied by an 

increase in 2-propanol. The inability to isolate the isopropylperoxo-

chromium(III) intermediate is unfortunate in that it limits a complete 

analysis of its decomposition reactions. 

- 2+ 
The small amount of HCrO^ ion probably arises from CrOg^^ pro-

2+ 
duced by Reaction 1-5. Solutions of CrOg^g are known to be unstable 

at pH < 3, resulting in the formation of HCrO^ (71,86,105,108). 

Cr02^q + = HCrO^" + SH"*" (1-81) 



www.manaraa.com

80 

2+ 
From pulse radiolysis studies (71) at pH 'V 2, CrOg^g was reported to 

react by a second-order process, with a rate constant ̂  2.4 x lO^M ^s 

2+ 2+ 
whereas preparation of CrO„ by mixing Cr with excess 0„ resulted (71) 

in a first-order decomposition, with t^yg 20 min at pH 2. The large 

disparity between these rates is unexplained (71); however, it appears 

the latter value is more reliable. 

2+ 
When CrOg^q is produced in a solution containing a high concentra­

tion of chromium(II) ion, relative to that of oxygen, rapid scavenging 

by Cr^q to form the peroxo-bridged intermediate, CrOgCr^^ (75), has been 

postulated (85,86). 

CrO_^^ + Cr^"*" -> CrO_Cr4+ (1-82) 
2aq aq 2 aq 

o 
CrO„Cr itself may slowly decompose (t , 'v- 25 min at 25.5 C) to 

^ âC} X/Z 

HCrO^" and Cr(H20)^3+ (105), 

H3O'' 

CrOgCr^q = HCrO^" + [^(HgO)^^* + , (1-83) 

or be reduced by two equivalents of Cr^^ to [Cr(0H)(H20)^]2^^ (85,86), 

CrOgCr^^ + 2Cr2+ = 2[Cr(OH)(H20)^]2^^ • (1-84) 

2+ 
In the present system, however, a low concentration of Cr is 

aq 

produced in a solution saturated with molecular oxygen, so it is highly 

2+ 
unlikely that Reaction 1-82 can compete with the oxidation of Cr^^ to 

st-order rate 
2+ 

Cr02^q. This would require Reaction 1-82 to have a pseudo-fij 

5 -1 2+ 
constant of 1 x 10 s , or greater, to divert Cr^^ from scavenging by O2; 



www.manaraa.com

81 

2+ 
the concentration of CrOg^g actually present during a kinetic run will 

be low enough to require the second-order rate constant of Reaction 1-82 

2+ 
to approach the diffusion-controlled limit, in order that [CrO^ ] be 

5 -1 
~ 1 X 10 s , a rather unreasonable expectation. Consequently, 

Reactions 1-82 through 1-84 probably are unimportant in the autoxidation 

of (CHg)2CHCr(H20)g^^\ and the source of [Cr(OH)(8^0)^32^^^ in the present 

system is not readily apparent. 

HCrO^ ion, once formed, appears to be stable toward further 

reaction with other autoxidation products. Reduction of 2-propanol is 

quite slow in 0.10 M H^O^, occurring with a second-order rate constant 

of 3.3 X 10 ^s ^ at 40°C (109). Reaction of HCrO, with Cr^^ ion 
4 aq 

2+ 2+ 
may be precluded by the latter's rapid oxidation to CrG^^g. Cr02^q is 

not reactive towards HCrO^ , either, as indicated by the quantitative 

conversion of the former ion to the latter (71). 

From the work cited (71) above for the rate of formation of 

HCrO^ ion, it appears this is not a rapid process, that is the rate of 

formation of HCrO^ is not expected to equal the rate of disappearance 

24" 
of (CH2)2CHCr(H20)g . This may explain the dependence of the rate of 

autoxidation on the wavelength of monitoring. At wavelengths where the 

molar absorptivity of HCrO^ is comparable to that of (CHg)2CHCr(H20)g^^, 

faster rates of reaction were measured; i.e., at 330 and 400 nm. A 

comparison of the molar absorptivities at the three monitoring wave­

lengths follows. 
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X/nm -/M cm . ̂ ^2+/M cm 
4 3 2. aq 

400 340 488 

330 1100 1108 

290 1250 2330 

At any of the wavelengths studied, the decrease in absorbance monitored 

upon reaction is due to replacement of the intensely absorbing 

o r g a n o c h r o m i u m ( I I I )  b y  p r i m a r i l y  C r ( H 2 0 ) g ^ ^  a n d  [ C r ( O H ) w h i c h  

by comparison absorb very weakly, and also small quantities of HCrO^ 

of comparable molar absorptivity. If some delay occurs in the production 

of HCrO^ , the decreasing organochromium(III) absorbance will be 

superimposed on the slowly increasing absorbance due to appearance of 

HCrO^ . This will cause the reaction to appear to be reaching infinity 

more rapidly, falsely reflecting a more rapid reaction rate. The data 

collected at 290 nm are deemed the best measure of the rate of 

autoxidation. 

« 
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PART II. ACID-CATALYZED CLEAVAGE OF 

3-HYDROXYETHYL(PENTAAQUO)CHROMIUM(III) ION 
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INTRODUCTION 

Over the past several years, the chemistry of organopentaaquo-

chromium(III) ions containing functional groups such as alcohols or 

ethers has been actively studied with the goal of understanding their 

effect on the reactivity of the carbon-chromium bond. Kinetic studies 

of the acid-catalyzed reactions of a few a-hydroxy-substituted complexes, 

H0(R,R')CCr(H20)g^*, and an a-alkoxyalkyl species, R(R'0)GCr(H20)^^^, 

were investigated by Schmidt, Swinehart, and Taube (18) in 1971. Using 

the pulse radiolysis technique, Cohen and Meyerstein (25) in 1974 

extended these protonolysis studies to include several highly unstable 

a-hydroxy- and a-alkoxyalkyl complexes. Recently, a number of more 

highly substituted analogs of these organochromium(III) ions have been 

investigated using either a multimix stopped-flow instrument or conven­

tional methods to study the kinetics (21-24). Reactions explored have 

included acidolysis and homolysis of the C-Cr bond (24) as well as 

oxidations by copper(II) and iron(III) ions (21,22) and reaction with 

mercury(II) ion (23). 

A related series of organochromium(III) ions, characterized by 

hydroxy- or alkoxy-substitution at the carbon atom 3 to the C-Cr bond, 

have been little explored. Cohen and Meyerstein (25) prepared the 

H0(CH2)2CCH2Cr(H20)^^^ ion, which contains a 3-OH group, and 

2+ 
HOCH2(OH)CHCr(HgO)^ with both a- and 3-hydroxyl substitution, by pulse 

radiolysis. The organic radicals were generated in the presence of 

Cr^^ from the corresponding alcohols by H or OH abstraction, 
aq 
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CH3C(CH3)20H + H/OH *CH2C(CH3)20H + Hg/HgO (2-1) 

HOCHgCHgOH + H/OH HOCHCHgOH + Hg/HgO . (2-2) 

The organochroinium(III) ions were formed in a subsequent reaction by the 

2+ 
rapid coupling of Cr and the radical (25), 

aq 

R* + Cr^q -> RCr(H20)g2+ . (2-3) 

The kinetics of acidic decomposition and the absorption spectra of these 

highly unstable complexes were reported (25), In particular, the reac-

2+ + 
tion of H0(CH2)2CCH2Cr(H20)^ with H^O was seen to follow a more 

complex rate law than the organochromium(III) ions with a-OH or a-OR 

2+ 
substitution. Two separate processes, both first-order in [RCr ], were 

aq 

detected after formation of the complex; each process occurred by two 

pathways—one acid-independent and the other with a first-order dependence 

on [HgO^^. The acid-dependent pathway was interpreted by a mechanism 

proceeding through a pi-bonded intermediate, formed in a proton-assisted 

elimination of the 3-hydroxyl group. It was suggested this intermediate 

rearranges to a more stable sigma-bonded alkenylchromium(III) ion, which 

slowly undergoes acidolysis by cleavage of the C-Cr bond to 

and the corresponding alkene. 
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V 2+ 
HO-C—C-Cr(H^O)c + H ^ 
Il ^ ^ T" 
CH3 H 

(CH3)2C=CH-Cr(H20)5 

or 

2+ 

CH2=C(CH3)CH2Cr(H20)5' 

V 

2+ -H 

+ 2+ 
H~0-C—C-Cr(H^)g 

H CH3H 

1 
2+ 

CH3 

3+ 

+ H2O 

alkene + Cr( H20)g 
3+ 

It was of interest in this work to extend these studies by making 

2+ 
the 3-hydroxyethylpentaaquochromium(III) ion, H0CH2CH2Cr(H20)^ , and 

investigate its decomposition reaction in acidic solution. Electro-

philic attack by at the 3-OH group could lead to elimination of 

water and the formation of a highly unstable pi-bonded ethylenechro-

mium(III) intermediate, easily releasing ethylene in a final step. 

However, if attack by HgO^ at the C-Cr bond were the preferred mode of 

reaction, rather than productive protonation of the 3-OH group, 

acidolysis would lead to formation of ethanol as the organic product. 
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HOCHgCHgCrCHgO)^ 

(3-elimination 

2+ 

(acldolysis) 

H3O/ -HgO 

*CH2=CH2 + CrCHgO)^ 
3+ 

^ HOCHgCH^ + CrCHgO)^ 
3+ 

Reactions of the type proposed by Cohen and Meyerstein (25) for 

3-hydroxyalkylchromluin(III) complexes are not without literature prece­

dent. In their study of the reductive ellmlnatlve of vlc-dlhalldes 

(particularly dlbromldes) by chromlum(II) Ion, 

HgC-CHg + 2Cr^^ = ^2=^2 + (.Cr^^^Br^''",Cr^^^ + Br"), (2-4) 

I I 
Br Br 

Singleton and Kochl (110) showed the reduction to be a multistep process, 

In which the halogen atoms are removed In sequential steps. 

Br Br 

Cri: /C-C\ + (?-5) 

%c—c \ 

ô=c 
t \ 

Cr% 

(2-7a) 

Br Cr 

Cr 
M 

Br" 

(2-6) 

(2-7b) 

+ Cr^Br^"^ 
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€'"1 II 
-C-rC-

' 

(2-7a) C2-7b) 
trans-elimination cis-elimination 

In Reaction 2-5 bromine atom abstraction by Cr^^ generates a haloalkyl 

radical, which is scavenged by another Cr^^ in Reaction 2-6 to form a 

B-bromoalkylchromium(III) intermediate. Elimination of the second 

bromine, as a bromide ion, can occur by two different pathways—one in 

III 
which halide and Cr are released trans to one another (2-7a), and the 

other involving cis-elimination, in which the halogen is captured by 

chromium to form Cr^^^Br^"*" (2-7b). 

The reaction scheme was generalized (110) to include similar reduc-

II 
tions of 3-substituted alkyl halides by Cr ; in particular, 

2+ 
3-hydroxylalkyl bromides preferred cis-ellmination (2-7b) to form CrOH . 

2+ 
The oxidation of metal ions, other than Cr , by 3-hydroxyalkyl 

aq 

radicals has also been interpreted in terms of a tt-bonded intermediate. 

The 3-hydroxyethyl radical reacts with Cu^ to form an unstable 
aq 

organocopper(II) intermediate (111-113). Ethylene was the suggested 

product (111-113) of Reaction 2-8, 

HOCH„CH_* + Cu"*" CuCH.CH.OH* Cu^"*" + CH„CH- + 0H~ , (2-8) 
2, 2 â.Q 2, 2L 3Ç[ 2, 2. 

by analogy to a reaction where products were more completely character­

ized (112), 
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'CH-C(CH„)-OH + Cu"*" CH =C(CH_)„ + Cu^"*" + 0H~ . (2-9) 
z J z aq L o c aq 

H* 
Reactions similar to 2-9 have been proposed for the oxidation of Ni (114) 

and Cd"*" (115) by *CH2C(CH3)20H. 

The acid-catalyzed evolution of ethylene (2-10) from 

HOCH2CH2Co(dmgH)2L (L = py or HgO), which can be obtained in solid form, 

has been well studied (116-119). 

HOCH2CH2Co(dmgH)2L + CHyCHg + (H20)Co(dmgH)2"'' + L (2-10) 

The mechanism has been shown (118,119) to proceed through a pi-bonded 

intermediate in which ethylene is coordinated to cobalt. 

Because of the expected Instability of the H0CH2CH2Cr(H20)^ ion, 

a rapid technique was necessary to detect and study its reactions. 

Flash photolysis was deemed suitable, in which the synthetic route to 

this organochromium(III) complex would be photochemical. In particular, 

a photochemical source of 3-hydroxyethyl radicals, produced in the 

2+ 
presence of Cr ion, was needed, 

aq 

HOCH2CH2* + Cr^q H0CH2CH2Cr(H20)g2+ . (2-11) 

Three photochemical systems for generation of HOCHgCHg were selected 

for study, on the basis of efficiency of radical production, water 

2+ 
solubility, and thermal stability towards Cr 

aq 

System 1 is based upon the very efficient addition of a hydroxyl 

radical to ethylene, to form HOCH^CHg". 
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HO + CHgCHg ->• HOCHgCHg (2-12) 

ki2/M~^s"^ = 2.1 X 10^ (120)^ 

Hydroxy1 radicals were indirectly obtained by taking advantage of the UV 

photochemistry of chromium(II) ion. As detailed in Part III, UV 

2+ 
excitation of aqueous solutions of Cr^^ results in the production of 

hydrated electrons (Reaction 2-13). 

2+ 3+ -
C'aq —* Cr(H20)6 + (2-13) 

In dilute acid (10 M or less) hydrated electrons can be competitively 

scavenged by nitrous oxide to form hydroxyl radicals (Reactions 2-14 and 

2-15), rather than conversion to hydrogen atoms by reaction with 

HgO^ (Reaction 2-16). 

e ~ + N„0 ̂  N„ + 0~ 
^ 2 (2-14) 

- 8.7 K lo' (121) 

o" + HO t OH* + 0H~ 
(2-15) 

pK^^ = 11.9 + 0.2 (122) 

e "*" + H-O"^ -v H* + H„0 
3 2 (2-16) 

k^g/M"^s~^ = 2.3 X 10^° (123) 

^ki2 was obtained as explained on page 133. 
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2+ 
Therefore, flash photolysis of a weakly acidic solution of Cr^^, 

saturated with NgO and ethylene, will generate HOCHgCHg radicals by 

the rapid sequence of Reactions 2-13, 2-14 and 2-15, and 2-12. The 

organochroiniuni(III) ion will be formed in a subsequent reaction, 2-11. 

The nitrous oxide, ethylene system is chemically very simple, with the 

advantage that complicating side reactions of the substrate are elimi­

nated. However, OH and not H radicals, can be produced from e 
aq 

only in dilute acid, so the usefulness of System 1 is somewhat limited. 

1 • 
The quantum yield for formation of HOCHgCH^ radicals can be no 

larger than (j) (e ) and will actually be considerably less due to loss of 
aq 

+ 24- + • 
hydrated electrons to H^O , reduction of Cr^^ to Cr , scavenging of OH 

2+ - • 
by Cr rather than ethylene, and self-reactions of e and OH radicals, 

aq ^ » aq 

Although (()(e ) has not been measured directly, the quantum yield for 
aq 

hydrogen gas formation in acid solution has been reported (124) to be 

0.13; hence (j)(e ) = 0.26. 
aq 

2 
Flash photolysis of an alkylcobaloxime complex was investigated 

as another source of the 3-hydroxyethyl radical. System 2. Maillard 

and Giannotti (125) studied the visible continuous photolysis (X > 420 nm) 

of the (3-hydroxyethyl)pyridinatocobaloxime, 

Quantum yield is a measure of the efficiency of a photochemical 
process. For product formation, it is defined as the number of species 
formed divided by the number of photons absorbed. 

2 
Cobaloxime is a trivial name given to complexes of 

bis(dimethylglyoximato)cobalt, Co(dmgH)2. 



www.manaraa.com

92 

CHgCHgOH 

by ESR spectroscopy, including the use of spin-trapping techniques. At 

room temperature, in methanol or aqueous solution (pH 7), two free-

radical species are produced—a hydrogen atom and the 3-hydroxyethyl 

radical. In aqueous medium, release of HOCHgCHg is strongly favored 

over formation of H . Light-induced Co-C bond hemolysis produces the 

alkyl free radical and Co(dmgH)2; the hydrogen atom originates from the 

dimethylglyoximato chelate after photo-excitation, presumably (125) from 

the chelated proton of the dimethylglyoximato chelate. In very recent 

work the photo-induced homolysis of similar alkylcobaloximes, to form 

the alkyl free-radical, has been studied (126) by flash photolysis. 

The quantum yield of free-radical formation was measured (127) in 

aqueous deoxygenated solution for a number of alkylcobaloximes, 

RCo(dmgH)2H20. Using irradiation at 380 nm, the quantum yields of 

photodecomposition (equivalent to yield of R ) were seen to be acid-
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dependent in the region 1 ̂  pH < 7, maximizing around pH 2. The quantum 

yields were not particularly sensitive to the axial ligand R, ranging 

from 0.12 to 0.27 at pH 2, for the particular series of alkylcobaloximes 

studied. The results indicate that alkyl free-radicals are efficiently 

produced by the visible photolysis of alkylcobaloximes. 

Alkylcobaloximes are known (128) to be cleaved by chromium(II) ion 

in a reaction where the alkyl ligand is transferred from the cobalt(III) 

center to the chromium(II) ion, forming an organochromium(III) ion and 

the cobalt(II) macrocycle (Reaction 2-17). The latter rapidly decomposes 

2+ 
in acidic medium to Co 

aq 

Cr^q + RCo(dmgH)2H20 + 2H"^ = RCrCHgO)^^* + co^+ + 2H2dmg (2-17) 

Although the rate of Reaction 2-17 had not been determined for 

R = CH2CH2OH, it was expected to be similar to that for R = CH^CHg or 

-CH^CHgCHg, which have apparent second-order rate constants of 

8.8 X 10"^M~^s~^ aAd 8.7 x 10"^M"^s~^ at 0.4 M ( 128). 

System 3 is based on the UV photochemistry of a 

carboxylatopentaamminecobalt(III) complex, [Co(NHg)g02CCH2CH20H](010^)2» 

Campano et al. (99) reported an extensive study in 1974 on the generation 

of organic free-radicals from the UV excitation of a series of 

2+ 
Co(NHg)g02CR ions, where R was an alkyl or aryl group. Irradiation with 

254 nm light in their intense (e > lO^M ^cm ^) ligand-to-metal charge 

transfer (CTTM) band was seen to induce photoreduction of the cobalt(III) 

center by electron-transfer from the carboxylato ligand, producing 

Co^q, CO2, and R in a 1:1:1 stoichiometry (99,129), Reaction 2-18. 
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2+ 2+ • 
Co(NH,).0_CR Co „ + C0_ + R + 5NH„ (2-18) 

(CTTM) 

Direct observation of R was accomplished using ESR (99,130-132); 

R = CHgC^Hg and CHgCOgH were also detected by their characteristic UV 

2+ 
spectrum using flash photolysis (99). The quantum yield for Co , 

2+ 
(f)(Co ), was determined at 254 nm and fell within the rather narrow 

range of 0.15-0.25 for most of the carboxylato complexes studied (99). 

2+ 
By virtue of the stoichiometry of Equation 2-18, (|)(Co ) is equal to 

2+ 
(j)(R), demonstrating CTTM excitation of Co(NH2)^02CR complexes is an 

efficient source of organic free-radicals for aqueous solution. 

While the UV photochemistry of the Co(NH2)^02CCH2CH20H^^ complex has 

not been previously studied, nor has even a report of its synthesis 

appeared, there is every indication that this type of photoredox chemistry 

2+ 
can be generalized to any Co(NH2)^02CR complex. However, for the 

Co(NH2)g02CCH2CH20H^^^ species to be a useful source of CHgCH^OH for this 

2+ 
work, it must be relatively stable towards reduction by Cr . While most 

aq 
2+ 

cobalt(III) complexes of this family are reduced by Cr in an inner-sphere-
aq 

electron-transfer process (133,134), reaction with the structurally similar 

2+ 
Co(NH2)g02CCH20H ion is slow enough to allow mixing of the cobalt(III) 

HgO* 

Co(NH-).0-CCH„0H^'*' + Cr^"*" » Cr0„CCH„0H(H„0)+ Co^* 
j D 2 6 6 6 éd D 

+ (2-19) 

k^g(25°C, 0.1-1.00 M H+)/M"ls"l = 3.06 (135) 
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complex and chromium(II) ion immediately prior to a flash photolysis 

experiment. An additional methylene group in the carboxylato ligand is 

not expected to alter the rate of electron-transfer for the 

3-hydroxypropionato complex appreciably. 
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EXPERIMENTAL 

Materials 

Co(NH3)5H20(C10^)3 

The aquo derivative was made from Co(NH2)gC0g(N0g)*l/2 H^O (136) by 

treating (137) a slurry with an equivalent amount of concentrated HCIO^. 

The precipitate was collected, washed with ethanol, then ether. 

[Co (NHj^sOgCCHgCHgOH] 

No report has appeared of the successful synthesis of this compound. 

In fact, in 1965 Butler and Taube (136) remarked, "complexes [of 

pentaamminecobalt(III)] with 3-hydroxy acids as ligands could not be 

prepared because of their marked tendency to form lactones and polymeric 

species." In spite of this observation, several routes to synthesize 

this compound were attempted. Two methods were unsuccessful—the 

procedure of Fan and Gould (138) which involves refluxing Co(NHg)^C03^ 

in methanol in the presence of a 10-fold excess of B-hydroxypropionic 

acid, and the preparation used by Dockal, Everhart, and Gould (139), 

which also utilizes the carbonato complex as starting material, but 

employs diethylene glycol as the solvent. 

The synthetic method of Jackman et al. (140) was more promising. 

In this method, the carboxylato complex is made by reaction of hydroxo-

pentaamminecobalt(III) ion with the anhydride of the carboxylic acid. 

The success of the synthesis depends on the ability to make the 
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corresponding anhydride. It need not be isolated, but can be made 

in situ, by reaction of the carboxylic acid with dicyclohexylcarbodiimide. 

It was not known if the 3-hydroxy group would be stable to the dehydra­

tion, which could lead to the vinylic anhydride instead. However, it 

was thought it would be possible to distinguish the resulting acrylato 

complex from the 3-hydroxypropionato complex, by NMR methods. 

Hydroxopentaamminecobalt(III) ion is obtained by deprotonation of the 

aquo complex with N,N-dimethylbenzylamine, in solution. 

The procedure was followed as published, except for modifications 

necessary to isolate the product. 3.95 mmol (0.82 g) dicyclohexyl­

carbodiimide in 8 mL DMF were stirred with 9.21 mmol (0.91 g) 

3-hydroxypropionic acid (see below) in 3 mL DMF, for 1 hr. The corre­

sponding urea precipitates almost immediately. 1.35 mmol (0.062g) 

Co(NH2)gH20(C10^)g in 10,2 mmol (1.52 mL) N,N-dimethylbenzylamine and 

5 mL DMF were added, and the mixture allowed to stir for 15 min. After 

cooling 15 min in ice-water, the urea was removed by filtration, and the 

filtrate evaporated under reduced pressure, at 50°, to remove the 

DMF. This solution was treated with water (3x5 mL), followed 

by further evaporation after each addition at 30-40°. Any 

remaining urea was filtered off. At this point the reference calls 

for addition of ethanol to cause the precipitation of the 

product. However, only a very viscous syrup was obtained, which 

had to be taken back up in water, and then precipitated by addition of 

perchlorate ion. Both concentrated HCIO^ and 5 M NaClO^ were used, the 

latter giving more satisfactory results. The light-pink product was 

then washed with ethanol, ethanol-ether (1:1), and then ether. 
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Recrystallization was attempted in dilute HCIO^ at 60°C, but only a 

noncrystalline type material could be recovered. 

The cobalt content of the solid was determined by a photochemical 

procedure described below. Values of 10.12 to 11.50% Co were measured, 

for different preparations, much lower than the expected 13.64%. The 

visible spectrum gave maxima at 352 and 502 nm, with molar absorptivities 

-1 -1 
of 60.3-61.6 and 72.3 M cm , respectively, based on percent Co. The 

position of the maxima and the magnitude of the absorptions are 

characteristic of carboxylatopentaamminecobalt(III) complexes (135). 

1 
The H NMR in D^O or deuterated DMSO consisted of two broad resonances 

centered at 6 = 2.5 ppm and 6= 3.75 ppm; integration gave a ratio of 

the downfield to upfield resonances of 2.8 to 1. The downfield resonance 

is presumably due to the protons of the 5 - cis - NH^, the g-methylene 

group of the carboxylato ligand, and, depending on the solvent, the 

hydroxyl group; the upfield resonance can be assigned to the trans-NH^ 

and a-methylene protons. A ratio of from 2.8-3 to 1 is calculated, 

dependent upon the inclusion of the 0-H proton. Distinct methylene 

resonances were expected, however, but were not clearly visible. A 

13 
C NMR was obtained in acidified D^O with a sample concentration of 

about 0.3 M. Although it was much more complex than it should have been 

for such a simple carboxylato ligand, the presence of bound acid was 

indicated. There were a number of unassigned resonances, presumably 

impurities. The IR of the material was obtained as Nujol and Fluorolube 

mulls. It was compared to that of the glycolatopentaamminecobalt(III) 
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perchlorate. No clear evidence existed for the 0-H absorption, expected 

at 3500 cm as present in the glycolato complex, although this may 

have been masked by N-H stretches at 3250 and 3320 cm~^. Some C-H 

stretches were apparent; however, the IR spectra does not provide con­

clusive evidence for the identity of the material. 

Since the method of synthesis of Co(NHg)^0gCCH2CH20H(C10^)2 using 

the procedure of Jackman, et al. (140) was not completely successful, 

the final route employed was based on the traditional preparation for 

carboxylato complexes of pentaamminecobalt(III)—heating an excess of 

3+ 
the carboxylic acid in the presence of Co(NH^)^H20 . 10 irnnol (0.9 g) 

HOCHgCHgCOOH were mixed with a cold solution of 5 mmol (0.2 g) 

NaOH in about 5 mL H^O to half-neutralize the acid. This solution was 

added to 2 mmol (0.9 g) Co(NHg)gH20(C10^)g dissolved in about 20 mL 

HgO. The solution was stirred for about 20 hours at 45°C. The visible 

spectrum was indicative of a carboxylato complex. In some of the 

preparations, extractions with ether were done at this point, although 

in later preparations it was eliminated. Ion exchange separation of the 

solution was carried out successfully on the cooled solution, using 

Sephadex SP C-25 cation-exchange resin. A very long column was required, 

25 cm, to separate the components from this size preparation. Elution 

with 0.01 M HCIO^ displaced a small volume of a pink-red solution which 

gave a visible spectrum indicative of a carboxylato complex. An attempt 

to isolate a solid product from this fraction resulted, after evapora­

tion, to a very thick, syrupy material, which would not dry even under 

high vacuum. Wtih 0.25 or 0.50 M HCIO^, a large cherry-red fraction 
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was eluted, well-separated from the orange-red band of unreacted 

3+ 
Co(NH2)gH20 remaining on the column. The eluant required to displace 

the cherry-red band was indicative of a +2 charged species. Evaporation 

of this solution at 40-45°, under reduced pressure, resulted in a wet 

precipitate, which after further drying over desiccant and then with 

ether, yielded a pink powder. 

The percent Co in the sample was again very low, ranging from 9-12%. 

However, the visible spectrum was indicative of a carboxylato complex— 

molar absorptivities of 70.4 M ^cm ̂  at 502 nm and 57.7 M ^cm ^ at 

351 nm were calculated, based on the percent Co actually determined. 

Minima were present at 316 and 404 nm. The NMR spectrum was obtained 

in DgO using the HOD resonance at 5 = 4.7 ppm as the reference; it is 

shown in Figure 2-1. The a-methylene protons of the carboxylato ligand 

are seen as a multiplet, closely resembling a triplet, at 6 = 2.6 ppm, 

superimposed on a small broad trans-NH^ resonance. Farther downfield, a 

larger broad resonance at 6 = 3.8 ppm was assigned to the cis-NH^ 

groups; splitting of this signal was taken as indicative of the triplet 

expected for the 3-methylene protons. The 0-H resonance is not expected 

in DgO. Integration was attempted but resonances are broad and overlap 

13 
with one another. A C NMR spectrum was cleaner than that found for 

the material prepared by the Jackman et al. (140) procedure, but like 

13 
the C of the free acid (see below) consisted of a pair of resonances 

for each unique carbon atom of the carboxylato group, rather than simply 

three single absorbances. The spectrum was obtained in acidified DgO 
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2.3 5.3 

Figure 2-1. NMR of Co (NH3)502CCH2CH20H(0104)2 referenced to 
HOD at 6 = 4.7 ppm 
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with a sample concentration of 0.2 M and p-dloxane as Internal reference. 

The pairs of resonances detected and their likely assignments are given 

below: 

1 2 
ppm assignment 

,3 

0 

II 
185.4, 185.0 bound -QC - CHgCHgOH + ? 

67.6, 58.8 bound -OC - CH^CH^OH + ? 

66.2, 57.8 free HO - C - CH^ÇH^OH + ? 

62.3 not assigned 

61.1 not assigned 

0 

II 
40.9, 38.3 bound - OCCHgCH^OH + ? 

11 
34.7, 33.6 free HOCCHgCHgOH + ? 

^Relative to ̂ -dloxane = 67.0 ppm. 

2 
Underlined carbon Indicates assignment. 

3 
No resonance (or pair of) assignable to the carboxylato C of the 

free acid was discernible over the baseline noise. This may not be 

totally unexpected as these resonances are the least intense in the 
spectrum of the free acid. 
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The assignments for the free carboxylic acid resonances were made after 

comparison, to its spectrum, reported below. Complexation of the carboxylic 

acid to cobalt is expected to cause a downfield shift of the resonances, 

most apparent for the carbonato carbon; the assignments for bound acid 

were made on this premise. Two resonances are unaccounted for and must 

be impurities. The presence of pairs of resonances for the bound 

ligand(s) suggests there are two carboxylato cobalt complexes, with very 

similar chemical structures. It appears the impurity present in the 

spectrum of the free acid has been complexed to cobalt(III) also, along 

with the desired 3-hydroxypropionato complex. 

In summary, the MR provides good evidence for coordination of 

the 3-hydroxypropionato ligand to the pentaamminecobalt(III) ion. The 

visible spectrum and molar absorptivities also support a carboxylato 

13 
complex. The C NMR parallels that seen for free HOCHgCHgCOOH; both 

appear to be contaminated with a very similar organic compound. 

The percent Co of the cobalt complex is too low, again indicating 

the sample is impure. Unfortunately, the inability to recrystallize the 

material, without evaporation to dryness, does not allow it to be 

purified. 

2+ 
The rate of reaction of the cobalt complex with Cr was measured 

aq 

to determine if the reactants were compatible long enough to be used 

in flash photolysis experiments. The reaction (Reaction 2-20) was 

followed spectroscopically, with either a large excess of the cobalt(III) 

complex or chromium(II) ion. 
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H O"^ 

Co(NH3)502CCH2CH20Ĥ "'' + ^ > (H20)5Cr02CCH2CH20H^"'" 

+ Cô "'' + SNH,"̂  (2-20) 
aq 4 

Rather than an expected simple pseudo-first-order reaction, a much slower, 

secondary reaction, whose rate was accelerated somewhat by a large 

2+ 
excess of [Cr ], was observed. This slower loss of absorbance might be 

a chromium(II) ion-catalyzed decomposition (Reaction 2-21) of the 

3-hydroxypropionatochromium(III) ion formed in Reaction 2-20. 

2+ 3+ 
(H20)5Cr02CCH2CH20H Cr(H20)g^ + HOOCCH2CH2OH (2-21) 

H3O 

Similar chromium(III) complexes hâve been reported (141) to undergo such 

catalysis. Another possible explanation is that the chromium(III) 

complex formed upon electron-transfer is metastable, reverting to 

(H20)3Cr02CCH2CH20H^''" with time, 

(NH^jsCo-O-^ C^2 
4+ 2+ 

(H20)4Ci^ CHg + Co + 5NH3 

Cr 
H 

0—CHg 

(HgOjsCrOgCCHgCHgOH 

(2-22) 

2+ 
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The rate of the first reaction was analyzed independently of the 

secondary step by the usual methods (142). In 0.10 M H^O^, y = 0.50 M, 

t 25°C, a second-order rate constant of 0.8-1.1 M ^s ̂  was obtained, 

similar to that for Cr^^ reduction of Co(NHg)^OgCCHgOH^^ (135)^ as 

expected. 

HOCHgCHgCOOH 

The literature preparation (143) was followed exactly. The percent 

purity was determined by titration with standardized NaOH, A weighed 

sample was dissolved in water and diluted to a known volume. Aliquots 

were titrated to a phenolphthalein end point. A percent acid of 

95.4 + 2.3% was measured, somewhat higher than the reported (143) value 

of 75-80%; the remainder was claimed (143) to be water. A NMR in 

DgO, with Tiers' salt as the Internal reference, consisted of a triplet 

at 6 = 2.65 ppm, assigned to the a-methylene protons, and a multiplet 

at 6 - 3.8 ppm, due to the g-methylene protons. Another multiplet at 

6 = 4.3 ppm is probably due to the presence of a bimolecular esterifica-

tion product, claimed as the contaminant in Aldrich supplied material. 

Splitting of the 2.65 ppm triplet (< 0.5 ppm), and the presence of a 

multiplet at 3.8 ppm, rather than a triplet, probably are indicative of 

this contaminant also. The integration of the 3.8 and 4.3 ppm multiplets 

13 
is equal to that of the 2.65 ppm triplet. C NMR spectra obtained in 

DgO substantiated the presence of an impurity in the acid. Rather than 

the single resonance, expected for each of the three carbon atoms in the 
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3-hydroxypropionic acid molecule, a pair of resonances, separated by 

about 2 ppm, were detected where only a single absorption was predicted. 

The spectra were unaffected by pH (at pH 8 the entire spectrum was 

shifted downfield as expected) or dilution of the acid by a factor of 

10. The resonances obtained at pH 0.2 are as follows: 

ppm Assignment 

176.8, 176.3 HOCCHgCHgOH + ? 

0 

66.3, 57.9 HOCCH^CH^OH + ? 

36.9, 34.7 HOCCH_CH„OH + ? 
— 2 Z 

These values are reasonable for this compound based on calculations (144) 

It is not possible to assign a structure to the impurity based on these 

numbers, but it is consistent with a bimolecular esterification product, 

acyclic or cyclic. 

HOCHgCHgCOCHgCHgCOH or 
fi 
V 

^Relative to p^-dioxane = 67.0 ppm. 

2 
Underlined carbon indicates assignment. 
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HOCHgCHgCo(dmgH)gPy 

This cobaloxime was made following the procedure reported by Wang 

(145). Details were sketchy as to the exact amount of 2-bromoethanol 

to add—a total of 12 mL were used in this procedure, added over a 

period of 6 hours, 2 mL per hour. A 1 min purge was done prior to 

each addition. After 21 hours of total reaction time, the TLC (Eastman 

13181 silica gel ) with 20% V/V 2-propanol/CHCl2 showed most of the 

cobalt was present as the alkylated form. The reaction mixture itself 

looked bright yellow-brown. Ether was used to dry the product after 

recrystallization from CHgClg. A 48% yield was obtained. The NMR in 

CDClg gave a singlet at 6 = 2.19, one triplet at 6 = 1.7% and another 

at 6 = 3.07, all in ppm relative to TMS. These are assigned as the 

methyl resonances of dmg, and the a-methylene, and 3-methylene protons, 

respectively. The characteristic spectrum for pyridine was seen as a 

series of resonances in the region 7 to 9 ppm. The integration was 

indicative of the desired material. The cobalt analysis gave 13.90%, 

compared to the theoretical of 14.26%, and the visible spectrum had 

maxima at 440 and 375 nm. 

HOCHgCHgCo(dmgH)gHgO 

The py adduct was converted (117) to the aquo by stirring 2 g (4.84 

mmol) with a 3.75 fold excess (3.5 g) of AG50W-X8 cation-exchange resin, 

in ~ 350 mL H^O for 1 min. The resin was removed by filtration, immedi­

ately, and the filtrate evaporated to dryness under reduced pressure at 
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35°. The orange-yellow material which remained was added to CHCl^, as 

suggested (Ref.145, p. 14), but some would not dissolve. The CHCl^ 

soluble fraction, after silica gel chromatography (with 10% CH^OH in CHCl^), 

was evaporated under reduced pressure to dryness. The dark orange crystals 

were identified as the py adduct, by NMR. The CHCl^-insoluble material 

was shown to be the aquo complex, by NMR in d^-MeOH, from the absence 

of the pyridine resonance. An impurity with a resonance at 6 = 2.1 ppm 

was present. Since the percent Co was very low, 11.51% compared to the 

theoretical of 16.73%, the material was subjected to a purification pro­

cedure. It was taken up in MeOH, and eluted on silica gel with 20% 

MeOH/CHClg. The eluant was evaporated to dryness under reduced pressure, 

and washed with ether. The percent Co was 14.37%, still low, and the 

NMR was not cleaner. No further purification was attempted. 

2+ 
The rate of reaction of Cr^^ and HOCH2CH2Co(dmgH)2H20 was measured 

to determine if these reagents would be compatible long enough for a 

flash photolysis experiment, before substantial thermal reaction occurred. 

The reaction was followed, by monitoring the spectrum of the cobaloxime 

with time, of a solution of 7.6 x 10 ^ M HOCH2CH2C0(dmgH)2^20 and 

1.3 X 10"^ M Crjq in 0.050 M HCIO^ (y = 0.054 M (LiClO^)). The rate of 

2+ 
acidolysis in the absence of Cr^^ was measured at the same acidity and 

ionic strength. The difference in observed rates gives k , for reaction 
ODS 

with Cr , k , = (2.81 - 1.20) x 10~ s~ ; assuming a first-order 
3Q ODS 

dependence on [Cr^^], the second-order rate constant of 1.23 M ^s ^ is 
aq 

calculated. However, at low ^ 5 x 10 ̂ M, reaction with Cr^"*" 
J aq 
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was no longer simple, each reaction producing a species with at 

446 nm. Cleavage of halomethylcobaloximes by Cr^^ was previously seen 

(146) to generate unidentified complexes, characterized by maxima at 

460 nm. It was suggested (146) these species were organocobaloxime-

chromium binuclear complexes in which a chromium atom was coordinated 

to the dimethyglyoximato ligand through the oxygen atoms of two oxime 

groups. 

RCo(dmgH)2Py + Cr^^ RCo(dmg'Cr)(dmgH)py^ + h"*" (2-23) 

To prevent Reaction 2-23 from occurring the di-BFg adduct of < 

HOCH2CH2Co(dmgH)2Py was made; this would effectively block the oxime 

2+ 
oxygens from coordination by Cr^^. 

ClCo(dmgBF2)2py 

The starting material ClCo(dmgH)2Py was prepared by the procedure 

reported by Schrauzer (147). However, a purer material can be obtained 

by an adaptation of the method reported by Costa, Tauzher, and Puxeddu 

(148). ClCo(dmgH)2Py was converted to the BF2 adduct by reaction with 

BF2'(CHgCH2)20 as reported (149). 

HOCHgCHgCo(dmgBF2)gPy 

The procedure was based on that reported by Wang (145), for the 

analogous 3-hydroxy-n-propylcobaloxime. Although the preparation was 

successful, the procedure may be far from optimized. 
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The reaction makes use of the nucleophilic addition of the reduced 

cobaloxime to ethylene oxide. Reaction 2-24; (Co^) is produced situ 

by BH^ reduction of chlorocobaloxime. Reaction 2-25. 

A 
Co(dmgBF„)- + CH-CH„ > HOCH„CH„Co(dmgBF-)„py (2-24) 

^ ^ CHgOH/py ^ ^ ^ ̂  

BH4-

ClCo(dmgBF,)_py ^ Co(dmgBF„)- (2-25) 

CHgOH/py 

Since ethylene oxide is extremely volatile, boiling at 10°C, the 

reaction must, at least in the early states, be maintained at low enough 

temperature to ensure a sufficiently high concentration of the oxide in 

the solvent. Aliquots of liquid ethylene oxide were transferred by 

using a pre-cooled syringe, and working as rapidly as possible. Trans­

fers were only semiquantitative, though, due to the difficulty of keeping 

the oxide liquified in the syringe. 

A slurry of 3.85 g ClCo(dmgBF2)2Py (7.71 mmol) in 100 mL 1 M py in 

CHgOH was deoxygenated by bubbling with nitrogen for 20 min, while cooling 

to -10°C in a CH^OH/ice bath. 1.2 g NaBH^ (30.8 mmol) and a small 

amount of PdClg were added; the solution turned dark-blue almost 

immediately. About 50 mL ethylene oxide (50x excess) were added over a 

period of about one hour, at which time the solution was greenish 

colored. Stirring was continued for another 11/2 hours at -10°C, 

while nitrogen flowed over the solution. Then the nitrogen purge was 

discontinued, the flask sealed, and the solution stirred at room 
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temperature for 24 hours. The solution was yellow-brown at this point, 

and a yellow-green precipitate was removed by filtration, dried with 

ether, and stored in the desiccator. The visible spectrum resembled 

that of 3-hydroxy-n-propylcobaloxime (145), with a maximum at 440 nm 

and a broad shoulder around 380 nm. The solid was recrystallized from 

CHgClg by precipitation with hexane. 1.6 g of a bright yellow powder 

was recovered, or a 41% yield. 

The proton NMR in dg-acetone gave a singlet at 6 = 2.48 ppm, 

presumably due to the methyl protons of the drag ligand. The triplets 

expected for the methylene protons of the organo ligand were not clearly 

resolved from the baseline; however, the a-protons appeared to give a 

triplet in the region of 6 1.8 ppm while the B-protons resonated at 

about 6 = 3.1 ppm. In the corresponding HOCH2CH2Co(dmgH)2Py compound, 

the a- and 3-protons of the organo group give triplets centered at 

6 = 1.72 and 3.07 ppm, respectively, similar to that seen above. A 

broadish singlet at 6 = 2.85 ppm could not be assigned, but was perhaps 

water. The presence of py was definitely indicated. The IR, in a 

Nujol mull, with KBr plates, showed the expected B-F vibrations at 

1168, 1015, and 825 cm A C,H,N analysis of the material Indicated the 

presence of an impurity. 

% Observed % Calculated 

C 34.64 35.40 

N 4.28 4.36 

H 13.18 13.76 
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Likewise, the percent Co was slightly low; 11.23% was measured as 

compared to the theoretical value of 11.58%. TLC on Eastman 13181 

silica gel plates showed a 20% ethyl acetate, 20% isopropanol mixture 

in CHClg caused separation into two components, but the very low solu­

bility of the material in CHClg limited the feasibility of purification 

by column chromatography. 

2+ 
The rate of reaction between Cr^^ and H0CH2CH2Co(dmgBF2)2Py was 

measured only approximately to determine if these reagents were compat­

ible long enough for flash photolysis experiments. The reaction was 

followed by monitoring the appearance of the product, Co(dmgBF2)2, 

2+ 
at 452 nm with time, under conditions where [Cr^^] » [RCo(dmgBF2)2Py]> 

+ 2+ 
and [HgO ] = 0.01 M. Assuming a first-order dependence on [Cr^^], a 

-1 -1 
second-order rate constant of 0.8 + 0.1 M s , at ambient temperature, 

was estimated. . However, this Increase in absorbance appeared to be 

proceeded by a much faster absorbance increase (at 452 nm), which 

occurred upon mixing. Also it was seen that the final absorbance of the 

2+ 
products depended upon the initial [Cr ]. These complexities in the 

aq 

thermal reaction are probably due to impurities in the cobaloxime, 

perhaps HOCH2CH2Co(dmgH)2Py. Since the flash photolysis studies were 

free of complications the impurities were deemed Innocent. 

Cr(C10^)2 

Aqueous solutions were prepared and analyzed by the procedure 

described in Part III, Experimental. 
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HCIO^, NaOH, LiClO^ 

Aqueous solutions were prepared and standardized as described in 

Part I, Experimental. 

Gases 

Nitrous oxide, Matheson, 98.0% minimum purity, and nitrogen. Air 

Products, were used to saturate solutions. Trace amounts of 0^ present 

2-f-
in either gas were removed by passing through Cr scrubbing towers. 

aq 

Ethylene, 99.98% research purity, was used as such. The low level of Og 

present in the tank was ascertained by bubbling directly into a solution 

2+ 
of Cr and noting any spectral change due to reaction with 0„. 

aq z 

Methods 

Instrumentation 

All NMR spectra were recorded with a Hitachi-Perkin Elmer R-20B 

in 
spectrometer, C NMR were obtained on a Jeol FX-90Q instrument, with 

the assistance of Bill McGranahan or Tom Lyttle. Analysis by mass 

spectrometry was accomplished with the assistance of Jerry Flesch. 

For recording absorption spectra a Gary 219 spectrophotometer was 

employed. 

Analyses 

% Co-photochemical decomposition (150) This procedure is better 

for carboxylatopentaamminecobalt(III) perchlorates than the following 

method. A weighed sample 5 mg) is dissolved in 6.00 mL 0.1 M HCIO^ 
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in a 2 cm quartz spectrophotometric cell. After capping, the cell is 

suspended inside a Raytheon "Photochemical Generator" which supplies 

intense UV light. The solution is photolyzed about 1 hr, then the cell 

is removed from the generator and allowed to cool. 5.00 mL is removed 

by pipet and transferred to a 50 mL volumetric flask. The amount of 

2+ 
Co is determined spectrophotometrically, as described below. 

aq 

7o Co-HClO^ decomposition This method is more satisfactory for 

the cobaloxime complexes. A weighed sample 10 mg) is transferred to 

a 50 mL volumetric flask and a few mL of concentrated HCIO^ added. It 

is fumed until almost colorless, then cooled. To determine the concen­

tration of Co^"*", 5 mL 12 M NH. SCN (extracted until colorless with 
aq 4 

methylisobutyl ketone) is added, 25 mL acetone, and the flask is cooled 

to room temperature. After diluting to the mark with water, the 

absorbance is read at 623 nm; the concentration of Co(SCN)^^ is calcu-

-1 -1 
lated using e = 1842 M cm . 

_3 
Ethylene A solution containing 3.8 x 10 M 

Co(NHg)g02CCH2CH20H(C10^)2 in 0.10 M HCIO^ was deoxygenated with nitrogen 

2+ 
in a 5 cm quartz spectrophotometric cell. An aliquot of Cr^^ was injected 

so [Cr^^] = 5.0 X 10 ^M, and the cell was suspended in a Raytheon 
aq 

"Photochemical Generator" which served as a source of UV light. After 

2 hours of photolysis, a stream of Ng was passed into the cell, while 

leading the effluent to a glass U-tube immersed in liquid Ng. The exit 

stream was bubbled into water, before venting to the air. The U-tube 

was sealed, still immersed in liquid Ng, and attached to the mass 
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spectrometer. The Ng was removed, and trapped gases allowed to 

vaporize into the instrument. 

Flash photolysis 

Preparation of solutions In System 1, 23.2 mL of water, contain­

ing the necessary amounts of perchloric acid and LiClO^, were placed in 

a quartz 10 cm spectrophotometric cell, which was sealed with a septum, 

and saturated with NgO. The cell was removed from the NgO line and 

5.8 mL of water saturated with ethylene were injected. This amounted 

to 1 to 4 V/V dilution such that [NgO] = 0.020 M and [CHgCHg] = 

8.8 X 10 (151) at 25°C. A small aliquot of Cr(C10^)2 solution was 

injected into the cell which was then photolyzed. 

In Systems 2 and 3, the cobalt compound was dissolved in water and 

transferred to a 10 cm quartz spectrophotometric cell. Aqueous perchloric 

acid and LiClO^ were used to adjust acidity and ionic strength to their 

desired concentrations. After sealing the cell with a septum, the solu­

tion was saturated with nitrogen gas, or, in some experiments, NgO. 

Immediately prior to a flash photolysis experiment, a small aliquot of 

Cr(C10^)2 solution was injected. 

Temperature control When room temperature kinetic data were 

desired, the photolysis solutions generally were not thermostatted. 

The temperature fluctuated somewhat as the day to day ambient temperature 

of the laboratory varied, but was measured precisely at the conclusion 

of the kinetic run. A Cole-Parmer Model 8502-20 thermometer was used for 

this purpose, immersing the temperature probe directly into the spectro-
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photometric cell, after removal of the septum. In many experiments 

solutions were flashed more than once, but the temperature could be 

measured only after the last flash. 

To obtain temperatures different from the ambient, the filled 

spectrophotometric cells were brought to temperature in a dish of hot or 

cold water as needed. Since the solutions could not be thermostatted 

during the actual photolysis, it was necessary to work rapidly to avoid 

a large drift in the temperature before it could be recorded at the end 

of the experiment. 

Equipment Details of the instrument and data analysis are given 

in the Appendix. In Systems 1 and 3, 250 J flashes of nonfiltered flash 

light were used. In System 2 light was restricted to X > 380 nm using 

jacketed spectroscopic cells^ filled with 0.1 M NaNOg, or A > 280 nm, 

obtained by slipping each flashlamp inside a tube of Pyrex glass. Energy 

was increased to 400 J. 

Spectrum of transient To obtain the spectrum of the transient, 

its absorbance was measured, point by point at several wavelengths, 

using an identical, fresh solution for each wavelength. The same energy 

flash and flashlamps were used to insure delivery of the same amount of 

energy to each solution. Different spectrophotometric cells were 

employed, however, for efficiency, but no differences between them were 

noted, at least for this photoreaction. The absorbance due to the 

transient was determined at its maximum value, before reaction occurred, 

^Kindly loaned by Professor D. S. Martin. 

2 
See the Appendix for details. 
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to maximize the measurement. By judicious choice of the oscilloscope 

time base, an accurate reading of the transmittance, before decay of the 

transient, I , could be measured. The final transmittance, I , of 
max' t^ 

the solution after reaction was also noted, and the absorbance of the 

2 
transient calculated by use of Equation A-4, 

I 

"trans. ' ̂  + log — . (A-4) 
o o 

where I is the transmittance of the solvent. 
o 
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RESULTS 

Results from flash photolysis studies of the three systems intro­

duced earlier will be discussed separately. 

HgO* 

System 1: Cr^^ + N^O + CH^CH^ ^ HOCH^CH^Cr(H^O) + Ng + HgO 

Rate of reaction of HOCHgCHgCrCHgO)^^^ with 

-4 
Flash photolysis of 5 x 10 M chromium(II) perchlorate, saturated 

-4 
with 0.020 M NgO and 8.8 x 10 M ethylene, using 250 or 400 J flashes, 

produced a transient which was detected at 390 nm. After the decay of 

the flashlamps, about 0.6 ms, a species absorbing more than the reactants 

had formed, which then decayed with a rate dependent upon the perchloric 

acid concentration. The final absorbance was slightly larger than 

before photolysis. 

The reaction rate of the transient with H^O was investigated in 

the region 0.1 ^ 3.0 iriM, by monitoring the loss of absorbance 

at 390 nm as a function of time. Ionic strength was maintained at 

0.05 M, and the temperature was 24.1 + 0.5°C. 

Oscilloscope sensitivities of 5 tnV/div (I^ = 1000 mV) and time bases 

of from 5 to 50 ms/div (depending on [H^O^]) were used to obtain kinetic 

data. Representative photographs of the transient decay, at four 

different [H^O^], are reproduced in Figure 2-2. The kinetic traces 

were analyzed according to a pseudo-first-order treatment in transient 
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Figure 2-2. Representative photographs of oscilloscope traces showing the reaction of 

H0CH2CH2Cr(H20)c2+ with HgO'*' at various acidities. Monitoring X = 390 nm; flash 
energy = 400 J (a-c), 250 J (d) ; y = 0.05 M (LiClO,); Iq = 1000 mV; If- (mV) = 915 (a), 
840 (b), 840 (c), 890 (d) 
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a) OJmM H-^0"^ 

5mV 

50ms/d 

c) 1.25mM Ĥ 0+ 

5mV 

20 ms/d 

b) 0.75m M H3O+ 

20 ms/d 

d) 2.5 mM H^0+ 

5ms/d 
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concentration by plotting 2n(D^ - versus time. While linear plots 

over about the last 90% of reaction were obtained at all acidities, 

often the initial points of a An(D^ - D^) versus time plot fell below 

the line defined by data at longer times. This could not be Interference 

from the formation reaction of the transient, which would be complete 

well within the decay of the flash profile. Instead, it appeared to 

be the result of formation of an additional species, also absorbing at 

390 nm; the half-life of formation was about 20 ms. It is not known if 

this species is stable within the time bases used, or if it too decays 

along with the transient of Interest. Since the absorbance due to this 

secondary reaction is small (< 20% of the absorbance changes monitored 

at 390 nm), it was disregarded. However, neither the origin, nor the 

identity of this additional species was apparent. 

In Figure 2-3, the kinetic plots corresponding to the photographs 

in Figure 2-2, are given. The pseudo-first-order rate constants, 

obtained from these and similar plots, are listed in Table 2-1 at the 

acidities studied. 

The observed rate constants were seen to have a linear dependence 

on , as given by, 

"obs = "o + " 'v""! • "-26) 

shown graphically in Figure 2-4. A least-squares fit of the data from 

Table 2^-1 to Equation 2'-26 yields k^/s ̂  = 2,9 + 0.4 and k/M~^s~^ = 
j 

(1.43 + 0,02) X 10 . These values were calculated for T = 24.1°C; 

^D' is linearly related to D, see Appendix. 
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a) 0.1 mM H^O  ̂

100 200 
t/ms 

b) 0.75 mM H^O"*" 

40 80 120 160 
t/ms 

c) 1.2 5 mM H3O+ 

40 • 80 120 
t/ms 

Figure 2-3. Plots of &n(D' 
Figure 2-2 

d) 25mM H^O"  ̂
T— 

20 40 60 
t/ms 

- D') versus time for photographs of 



www.manaraa.com

121 

2+ 
Table 2-1. Rate constants for the reaction of H0CH^CH„Cr(H„0)^ .with 

HLO+ ̂  2 2 2 5 

[HgO+j/mM 

0.1 4.38 + 0.14 (3) 

0.25 7.38 + 1.3 (3) 

0.5 9.9 + 1.0 (2) 

0.75 13.7 + 1.5 (3) 

1.25 20.1 + 2.1 (3) 

1.5 23.7 + 6.6 (3) 

2.0 27.4 + 1.5^-(3) 

[30.7]C 

2.5 35.2 + 1.7^ (3) 

[38.6]^ 

3.0 42.2 + 3.4® (3) 

[46.7]= 

^Uncertainties represent iCT; number in parentheses is number of 
kinetic runs; monitoring X = 390 nm; flash energy = 250 or 400 J; 
VI = 0.05 M (LiClO^); [Cr2+] = 5 x 10"%; [N2O] = 0.020 M; [CHgCHg] = 
8.8 X 10~^M; T = 24.1 + O.50C except as noted. 

= 22.4°C. 

^Number in brackets is kg^g calculated for T = 24.1°C from experi­
mental data at lower temperature using Equation 2-27. 

= 22.8°C. 

®T = 22.6°C. 
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P 20-

2+ 
Figure 2-4. The dependence of kobs for the reaction of HOCH^CH^CrCB^O)^ with 

HgO"*", using data from Table 2-1. Open circles represent experimental values 
of kg^g; solid circles are calculated for T = 24.1°C from activation parameters, 

using Equation 2-27 
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although not all the data was obtained at this temperature, values of 

^obs so adjusted by using the activation energies determined 

separately (see below). Because of the necessity of working only at 

very low [HgO^], the concentration of acid in these experiments is 

probably not of the accuracy needed to assign an absolute value to the 

k^ term with complete confidence. The concentrations of listed in 

Table 2-1 were obtained by calculation only, based upon dilution of a 

stock solution of more concentrated HCIO^. Contributions from acid 

present in the Cr(C10^)2 or LiClO^ stock solutions were neglected, as 

they were too small to be determined with any accuracy. Taking these 

points into consideration, it is quite likely the error limit stated 

for k^ is much larger than that estimated from the least-squares fit of 

the data. Consequently, it is possible k^ is zero; the amount of acid 

2+ + 
introduced by the Cr and Li stock solutions would only have to be as 

aq •' 

large as 0.2 mM, in order for the line in Figure 2-4 to pass through 

the origin. 

Effect of temperature 

*4* 
The temperature dependence of the reaction of H^O with the tran­

sient was investigated by determining its rate over a 29° range in 

temperature, while maintaining [H^O ] =» 0.10 mM, and y «= 0.05 M. At 

16°C, the acid concentration was varied to include kinetic runs at 

0.10, 0.20, 1.0, and 2.0 mM HgO^, all at y 0.05 M. The absorbance of 

the transient was monitored at 390 nm, and 250 J flashes were used. 
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The solubilities (151) of the gases, NgO and ethylene, will, of 

course, vary with the temperature of the experiment. At the lowest 

temperature studied, 13.2°C, the concentrations of N^O and CHgCHg will 

_3 
increase to approximately 0.026 M and 1.2 x 10 M, respectively, and 

at 42.6°C, decrease to approximately 0.011 M and 4.2 x 10 At 

higher temperatures the scavenging of e^^" by NgO, and of OH by 

ethylene, will not be able to compete as effectively with HgO^, and 

2+ 
Cr , respectively, if the rate constants are assumed to vary only 
aq 

slightly with temperature. The yield of HOCHgCHg radicals will be 

lowered; as expected the amount of transient formed was reduced by 

about 25% over the 29° range in temperature. 

Pseudo-first-order rate constants (k , ) obtained at various 
obs 

temperatures, are collected in Table 2-2. The rate constants were 

analyzed as a function of temperature and acid concentration to sort 

out the individual activation parameters for the acid-independent, and 

acid-dependent paths, Equation 2-26. By applying the Eyring equation to 

and k individually. Equation 2-26 becomes, 

/ AsJ*VR -AH */RT . aS,*/R -4H,*/RI \ 
(2-27) 

where 

R = Gas constant 

T = Absolute temperature 

N = Avogadro's number 

h » Planck's constant 
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2+ 
Table 2-2. Rate constants for the reaction of HOCH^CH^Cr(H^O)^ with 

at various temperatures* 

T/°C kobs/s 
-1 

13.2 1.38 + 0.12 

16.0^ 2.92 + 0.58 

16.1^ 18.4 + 1.4 

16.4 1.83+0.17 

16.5^ 10.2 + 1.4 

24.1 4.38+0.14 

29.8 7.43+0.52 

38.6 15.4+0.81 

42.6 24.9 + 4.2 

^Uncertainties represent la of three replicate runs; monitoring 
X = 390 nm; flash energy = 250 J; [H3O+] = 0.10 mM, except as noted; 
VI = 0.05 M (LiC104); [Cr|+] = 5 x 10"%; [N2O] and [CH2CH2], see text. 

^0.20 mM HgO""". 

^2.0 mM HgO"*". 

•^1.0 mM HgO^. 
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+ / + 
AS^ / AH^ = entropy/enthalpy of activation for acid-independent 

pathway 

ASj^ / AHj^ = entropy/enthalpy of activation for acid-dependent 

pathway. 

The values of were fit to Equation 2-27 as a function of tempera­

ture and acidity, by a nonlinear-least-squares computer program. The 

following activation parameters were obtained. 

path kj^ path 

± 
AS^/e.u. 9.4+2.6 -5.0+3.9 

AH*/kcal mol'l 19.6jf 0.8 10.3 + 1.1 

In view of the questions raised earlier about the reality of a k^ 

pathway, if k^ is set to zero by adding 0.20 mM to each calculated 

acid concentration, the data in Table 2-2 can be reevaluated to give 

± rfc _1 
AS^/e.u. = 13.8 + 2.5 and AH /kcal mol = 15.8 + 0.8. 

Effect of ionic strength 

The variation of the rate constant for the reaction of the transient 

with HgO"'" was also investigated as a function of ionic strength, for the 

purpose of establishing its charge. At a perchloric acid concentration 

of 0.1 mM, the ionic strength was varied from 0.0081 to 0.10 M by the 

addition of LiClO^. Ionic strength was calculated from Equation 2-28. 

y = I {[HgO"*"] + [Li+] + 4[Cr^q] + [C10^~]} (2-28) 

The data were treated according to Equation 2-29, once again setting 

kg = 0 calc. mM), as justified by the uncertainty 

in [HgO"*"]. 
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1/2 
2Z Z 

log k = log k + (2-29) 

1 + 3a 

A discussion of the Brcjinsted-Debye-Huckel equation (Equation 2-29) was 

presented earlier in Part I, Results, and will not be restated here. 

The rate constants obtained as a function of y are collected in 

Table 2-3, and a plot of log k^^^ versus ay^'^^/(L + gap^^^, with a = 0.509, 

Ba = 1, is presented in Figure 2-5. If the transient is properly 

2+ 
formulated as HOCHgCHgCrCHgO)^ , the charge product of Equation 2-29, 

2Z^Zg should be 2(+2)(+l) = +4. The slope of the line in Figure 2-5 is 

drawn to exactly +4, and can be seen to approximate the data within its 

stated uncertainty, in the region 0.02 M < y ^M, after which the experi­

mental values fall below the theoretical line. 

This type of behavior is not unexpected at ionic strengths greater 

than about 0.01 M where the Debye-Huckel equation is no longer valid. 

To extend its useful region, a term linear in ionic strength (77-81) is 

often included, so Equation 2-29 becomes, 

2Z Z a yl/2 

log k = log k + — r-jy - Cy. (2-30) 
1 + ga y^/^ 

The kinetic data from Table 2-3 were fit to Equation 2-30 using a 

least-squares computer program^ which allowed k°, 2Z^Zg, and C to be 

treated as adjustable parameters. With a = 0.509, 3a = 1, the following 

values were computed. 

^The least-squares program used was one implemented by Dr. R. B. 
Pfaff, Ames Laboratory. 



www.manaraa.com

128 

2+ 
Table 2-3. Rate constants for the reaction of HOCHgCHgCrCHgO)^ 

with at various ionic strengths 

0.509 

1 + pi/z 

0.0081 3.49 + 0.09 0.0416 

0.010 3.26 + 0.19 0.0458 

0.020 3.40 + 0.16 0.0629 

0.030 3.75 + 0.33 0.0751 

0.040 4.34 + 0.30 0.0848 

0.050 4.38 + 0.14 0.0930 

0.080 4.67 + 0.21 0.112 

0.090 4.23 + 0.14 0.117 

0.10 4.41 + 0.51 0.122 

% = y(calc.) + 2.0 X 10"^M H^O*. 

Uncertainties represent 1er of three replicate runs; monitoring 
X = 390 nm; flash energy = 400 J; [HgO'*'] = 3 x 10~^M (assumed, see text); 
[Cr2+] = 5 X lO-^M; [N2O] = 0.020 M; [CH2CH2] = 8.8 x 10"%; 
T = 23.8 + 0.30c. 
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Figure 2-5. Plot of log k versus 0.509 ^ for the reaction 

o f  H 0 C H 2 C H 2 C r w i t h  H g O ^ .  T h e  l i n e  i s  d r a w n  t o  h a v e  
a slope of +4 
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k° = 2.4 + 0.4 

2Z.Z, = 3.4 + 1.7 
A B — 

C = 1.5 + 1.4. 

These values reflect the uncertainty in the kinetic data; the assignment 

of a charge of +2 to the transient on the basis of the calculated value 

of 2Z^Zg, 3.4+1.7, is somewhat speculative, although without a doubt 

the transient can definitely by identified as cationic. 

Spectrum of HOCHgCHgCrCHgO)^^^ 

The spectrum of the transient was obtained in the region 310-440 nm, 

and is reproduced in Figure 2-6. A maximum is present at 390 + 5 nm, 

a minimum at 365 + 10 nm, and a rising absorbance into the UV region. 

A shoulder at 330 nm may be an artifact due to optical restrictions at 

these shorter wavelengths. 

Absolute values of molar absorptivities cannot be calculated 

unless the concentration of the transient is known. It can be estimated, 

2+ 
from the yield of HCrCHgO)^ produced when no NgO or ethylene are 

present (see Part III). In 0.01 M H^O^, an absorbance change of 

0.0223 + 0.0011 (£ = 10 cm) was measured at 380 nm due to the formation 

of HCr(H20)^^^. Using the published (36) value for ̂ ^80 

190 + 20 M"^cm~^, [HCr(H20)3^'*'3 is calculated to be (1.17 + 0.21) x 10~^M. 

2+ 
The yield of hydrated electrons from the UV photolysis of Cr 

aq 

(Equation 2-13) can then be determined after calculation of the fraction 

of e^q which react to form hydrogen atoms (and eventually HCr(H20)g^^). 

From Reactions 2-16 and 2-31, 



www.manaraa.com

131 

E 
o 
o 

0 
U 
C 
m 
n  
L 
O 
U )  
n 
< 

00-
o 

300 380 460 
A. /nm 

Figure 2-6. The electronic spectrum of the ion. Cell 
length = 10 cm; flash energy = 250 J 
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e " + + H* + H„0, (2-16) 
aq J z ' 

= 2.3 X 10^° (123) 

e „" + Cr2+ Cr"*", (2-31) 
aq 

= 1.4 X 10^° (36) 

It can be seen this fraction is equal to 0.94 under the experimental 

conditions of [Cr^^] = 1 x 10 and [H^O^] = 0.01 M. The concentra­

tion of e^q" is therefore (1.17+0.21) x 10~^/0.943 = (1.24+0.22) x 

)-5 

radicals, in competition with Reactions 2-16 and 2-31 

10 M. In the presence of NgO, most e^^ will be scavenged to form OH 

e ^ ~  +  Ng O  +  Ng  +  O "  ( 2 - 1 4 )  

= 8.7 X 10* (121) 

O" + HgO^ziOH' + OH" (2-15) 

pK^g = 11.9+0.2 (122) 

The fraction of e which will be converted to OH is 0.949 for 
aq 

[NgO] = 0.020 M, [HgO^] = 1 X 10~^M, and [Cr^^] = 5 x lO'^M. Hydroxyl 

2+ 
radicals can react with Cr , or add to ethylene. Reactions 2-32 and 2-12. 

aq 

OH* + Cr^* CrOH^"^ (2-32) 
aq 

= 4.8 X 10® (152) 
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OH + CHgCHg HOCHgCHg (153) (2-12) 

= 2.1 X 10^ (120)1 

The fraction which react by addition is calculated to be 0.44 at 

[Cr^q] = 5 X 10 ^M, [CH2CH2] = 8.8 x 10 ̂ M. If it is assumed that 

(j)(e^q) is independent of acid concentration, then ̂ (e^q) will depend 

2+ — 
only on the amount of light absorbed by Cr , [e ] = . While I 

•' ° aq aq a a 

itself is unknown, 1^/1^ can be calculated for any particular wavelength 

using Equation 2-33 (Ref. 154, p. 11), 

 ̂- 1 - 10'' 1 'I'i % • (2-33) 

^o i ^ 

where is the amount of light absorbed by species i; is the amount 

of incident light, H is the path length, is the molar absorptivity 

of the i*"^ species, and is its concentration. For example, at 265 nm 

e„ 2+ = 15 M~lcm"l (155), so I /I is 0.0171 for 5 x 10~^M Cr^\ and 
Ur €L O âQ 

_o _ 2+ 
0.0339 for 1 x 10 M. Hence, [e ] at 5 x 10 M Cr will be equal to 

HQ ag 

0.504[e ] for 1 x 10 Cr^"*". Finally, the yield of H0CH»CH- radicals 
âQ âQ te 6 

is given by Equation 2-34, 

k]^2 represents the average of the reported (120) rate constants 
for the reaction of HO with ethylene; i.e., 4.8 x 10?, 1.0 x 109, and 
4.9 X 10®, all in M~^s~^. The former value is reported (120) as the sum 
of kjL2 and the rate constant for hydrogen abstraction by HO* to form the 
vinyl radical. In more recent work (153) H-abstraction has been deter­
mined to be unimportant, and hence this reaction was neglected in the 
above scheme. 
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produced in 5 x 10 Cr^g^ 

•{fraction of e converted to OH } 
aq 

•{fraction of OH converted to HOCHgCHg }, (2-34) 

= {0.504((1.24 + 0.22) x 10"^M)}»{0.94}«{0.44} 

= (2.6 + 0.4) X 10"^M. 

2+ 
The absorbance measured at the 390 nm maximum of H0CH2CH2Cr(H20)^ 

was 0.0117 + 0.0006 (£ = 10 cm); assuming that all HOCHgCHg radicals 

are scavenged by Cr^^, a molar absorptivity of 450 + 100 M ^cm ^ is 
aq 

approximated. The large uncertainty in this value reflects that it 

clearly is useful only as an estimation of the order of magnitude of 

for HOCHgCHgCrCHgO)^^*, 

H/ 
System 2: HOCH2CH2Co(dmgBF2)2py —>  

H0CH2CH2Cr(H20)5^"*' + Co(dmgBF2)2 + py 

Flash photolysis of aqueous solutions of (2.0 + 0.2) x 10 

.1 ,«-3„ „^2+ 
aq 

was detected at 390 nm. 400 J flashes of light of X > 280 or 380 nm 

HOCH2CH2Co(dmgBF2)2Py and 1.0 x 10 M Cr produced a transient which 

were used. During the decay of the scattered flashlight ('^ 1 ms), an 

absorbance grew in which then decreased, at a rate dependent on [H^O^], 

to an absorbance lower than before photolysis. 

^lie thermal reaction of H0CH2CH2Co(dmgH)2Py and Cr^^ (see 
imenta: 

cobaloxime. 
Experimental) prevented any flash photolysis experiments with this 
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Permanent spectral changes were more completely analysed using a 

Cary 219 spectrophotometer. A 3.7 x 10 HOCHgCHgCo(dmgBFg)gPY 

solution containing ̂  1 x 10 Cr^^, in 1 x 10 HgO^, was photolyzed 

with a 400 J flash, and the spectrum recorded on the Cary 219 before 

and after the flash. Initially, the spectrum was due only to the 

2+ 
organocobaloxime with a 442 nm maximum and 380 nm shoulder (Cr^^ 

absorbs very weakly). After the flash a more intense maximum at 456 nm 

and a minimum at 326 nm appeared, in excellent agreement with the 

spectrum of authentic Co(dmgBF2)2 (90). The amount of Co(dmgBF2)2 

formed can be calculated from the spectral changes. At 400 nm, an 

increase in absorbance of 0.635 was measured; using (e - e ) 
3 (Co") R(Co^^^) 

as (4.05 - 1.17) X 10 M cm , the concentration of Co(dmgBF2)2» pro-

_5 
duced by one flash, is calculated to be 2.2 x 10 M. 

Flash experiments conducted in the presence of 2 or 5 M CH^OH, 

at [HgO^] = 0.01 M, showed no reduction in the size of the transient 

detected, nor its rate of reaction. Because methanol is an effective 

scavenger for H atoms, 

H* + CH3OH HOCH2* + H2 , (2-35) 

k35(0.1 M h''")/m"V^ = (2.0 + 0.8) x 10* (156) 

it may be concluded that H atoms are not a precursor to the transient 

detected. This eliminates the possibility that the unstable species 

detected might be HCr(H20)g^^, formed by the scavenging of H atoms by 

2+ 
Cr , a concern since the visible photolysis of organocobaloximes has 

aq 
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been reported (125) to produce small yields (as compared to R ) of 

hydrogen atoms in protic solvents. H abstraction from CH^OH by 

HOCHgCHg radicals is very slow, so no 3-hydroxyethyl radicals would be 

scavenged. 

+ 
The reaction rate of the transient with H^O was investigated by 

monitoring the decrease of its absorbance at 390 nm with time. Rates 

were determined as a function of perchloric acid concentration, 

[HgO^] = 0.001 - 0.01 M, at a constant ionic strength of 0.01 M; the 

temperature was ambient, 25 + 1°C. 

Oscilloscope sensitivities of 5 mV/div (I^ = 1000 mV) and time 

bases of 2 to 10 ms/div (depending on [H^o"^]) were used to follow the 

transients. The kinetic data fit a pseudo-first-order treatment in 

transient concentration at all acid concentrations Investigated, as 

evidenced by linear &n(D^ - D^) versus time plots. The rate constants 

obtained from the slopes of these plots were seen to vary linearly with 

[H^0+], 

"obs • "o + k[«y] . (2-36) 

A least-squares fit of the data to Equation 2-36 gives k^/s ̂  = 33 + 12 

and k/M ^s ^ = (1.5 + 0.2) x 10*. Because of the large uncertainty in 

k^, it can be assumed to be zero so that k^^^ has no acid-independent 

component. 
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Cr^^, H,0+ 

System 3: Co(NH2)g02CCH2CH20H > 

HOCHgCHgCrfHgO)^^* + + 5NH^ + CO^ 

Ifhen aqueous solutions of (0.5 - 1.0) x 10"Co(NHg)g02CCH2CH20H^* 

and (0.5 - 1.0) x 10 were photolyzed with 250 J flashes of light, 
aq 

a transient was detected at 380 or 390 nm. During the decay of the 

scattered flashlight, about 0.6 ms, an absorbance grew in which then 

decreased, at a rate dependent on the perchloric acid concentration. 

The final absorbance was slightly higher than before photolysis. 

Saturating the photolysis solution with nitrous oxide. Instead of with 

nitrogen gas, had no effect on the size of the transient detected, nor 

on its rate of reaction with HgO^. This confirmed the transient was not 

2+ 2+ 
HCr(H20)g , formed from the UV photolysis of Cr^^, because the 

precursor to H atoms, hydrated electrons, are efficiently scavenged by 

NgO. 

Indeed, considerably more of the UV flashlight will be absorbed by 

2+ 
the cobalt(III) complex than Cr , because of the former's Intense UV 

aq 

absorbance. At any particular wavelength, the fraction of light absorbed 

by either component can be calculated by application of Equation 2-33. 

For example, at 270 nm, using E_ 2+ - 15 M ^cm ̂  (155), e = 

-1 -1 TTT CO^ 
646 M cm , [Co ] = 5 x 10 M, and A = 1 cm, Ig /I = 0.44 and 

III Colli 
la 0J./I = 0.020, or Co absorbs 95% more of the flashlight at 270 nm 
Cr^ o 

2+ 
than Cr 

aq 
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When a deoxygenated solution of the cobalt(III) complex at a con­

centration of 1 X 10 in 0.01 M HCIO^ is photolyzed with a 250 J flash 

2+ 
of light, in the absence of Cr , no transient is detected at 390 nm. 

aq 

Only a simple loss in absorbance occurs, due to photolysis of the 

2+ 
cobalt(III) substrate to Co . This result indicates that the transient 

aq 
2+ 

detected in the presence of Cr^^ is a direct consequence of a reaction 

involving chromium(II) ion, and the transient behavior cannot be 

attributed to a reaction of the type, 

H+ 

H0CH_CH.'+Co(NH_)c0_CCH_CH_0H2+ > Co^"*" + 
z z J D z z z aq 

HOCH CH* 

or + 
CHgCHg + H 

\7 

+ HOgCCHgCHgOH + . (2-37) 

0 

Rate of reaction of transients with 

4-
The reaction rate of the transient with H^O was investigated by 

monitoring the decrease of its absorbance at 380 or 390 nm with time, as 

a function of the perchloric acid concentration in the range 0.0025-0.25 M. 

Ionic strength was maintained at 0.50 M, and the temperature of the runs 

was 24.8 + 0.7°C. Oscilloscope sensitivities of 5 or 10 mV/div 

(I^ = 1000 mV) and time bases of from 0.2 to 20 ms/div (depending on 

-f 
[HgO ]) were used to follow the transients. 

Attempts to analyze the kinetic data according to a pseudo-first-

order treatment in transient concentration gave curved plots of 
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&n(D^ - Djj) versus time, when was less than about 0.1 M. 

However, the data in this acidic region was successfully analyzed by 

treating the loss in absorbance with time as due to parallel reactions 

of two transients, with substantially different lifetimes. At any given 

acidity the kinetic data was fit to Equation 2-38 by using a nonlinear 

least-squares computer program.^ 

-kit -k't 
°t = - Ep )e ^ + [B]^(eg - Gp )e ^ (2-38) 

In Equation 2-38 A and B designate the faster and slower reacting 

transient, respectively; and Pg denote their products. 

The pseudo-first-order rate constants k^ and kg were then analyzed 

as a function of . A first-order dependence on [H^O^] was found 

for k^, such that k^ = » and in a least-squares fit of the 

data, k^/M ^s ̂  = (3.6+0.4) x 10^. The acid-dependence of k^ was 

more complex but fit a reaction scheme in which 6 is protonated to a 

reactive form BH , which then goes on to product with a rate constant k_. 
B 

This scheme identifies the measured 

. K 
B + HgO BH + HgO 

+ 
BH —^ Pg 

rate constant k^ as, 

^ kfiREH^G ] ^ (2-39) 

® 1 + KtHjO"^] 

^The least-squares program used was one implemented by Dr. R. B. 
Pfaff, Ames Laboratory. 
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A more useful form is obtained by Inversion, 

^ + ^^~T" ' (2-40) 

B ^ kgK[H^O ] 

+ . 
which demonstrates that a plot of l/k^ versus 1/[I^0 ] must be linear if 

the above scheme is operative. The Intercept of such a plot will give 

-1 
kg ; with this value, the equilibrium constant K can be calculated 

from the slope. 

For acidities in the range 0.075£ [HjO"*"] £ 0.25 M the kinetic data 

fit the simpler treatment of &n(D^ - D^) versus time, suggesting that 

only the reaction of transient B was being followed. At these higher 

acid concentrations the decay of transient A would have been too fast 

to detect with the available instrumentation. For example, at 0.2 M 

HgO , A would have a half-life given by only, 

t , - = 0.096 ms , 
1/2 (3.6 X 10 M"V^)(0.2 M) 

while the "dead" time of the flash photolysis apparatus is 'v- 0.6 ms 

under these conditions. This calculation assumes k. = 3.6 x lO^M ^s ̂  
A 

is valid in this acidic région. The slopes of plots of &n(D^ - D^) versus 

time gave -kg directly. 

When values for k^ in the region 0.01 < [H^o"*"] £ 0.25 M were 

treated according to Equation 2-40^ a reasonably linear plot was obtained. 

Values at the lowest [H^o"*"], 0.0025 and 0.005 M, deviated from this 

line , however, indicating this treatment was not valid at low acid. A 

least-squares fit of the data in the region 0.01 M £ [H^O^] £ 0.25 M 
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gave kg/s ^ = (1.9 +0.7) x 10^, and k^K/M ^ = (5.60 + 0.53) x 10^; 

hence, K = 2.9 f 2 N 

Product of reaction of H0CH2CH2Cr(H20)g^^ with 

2+ 
The organic product of the photolysis of Co(NHg)g02CCH2CH20H in 

2+ 
the presence of Cr^^ was identified as containing ethylene and carbon 

dioxide by comparison of the m/e peaks and their intensities with 

published spectra. 
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DISCUSSION 

Of the three photochemical systems studied for generation of 

2+ 
HOCHgCHg radicals in the presence of Cr^g, System 1, based on the 

addition of the hydroxyl radical to ethylene, proved to be the most free 

of complicating side reactions. Consequently, the transient produced in 

this system was characterized most thoroughly. In all three systems, the 

rate of the disappearance of the transient as a function of acid concen­

tration was determined, but only in System 1 were activation energies of 

the reaction, a semi-quantitative study of the effect of ionic strength 

on the reaction rate, and the spectrum of the transient obtained. 

The reactions which must be considered in System 1 are summarized: 

hv 

aq 
(2-13) 

(2-14) 

k^^/M~^s"^ = 8.7 X 10^ (121) 

0 + HgO ̂  OH + OH (2-15) 

pK^^ = 11.9 + 0.2 (122) 

(2-16) 

= 2.3 X 10^° (123) 

- 2+ + 
e + Cr 4. Cr 
aq aq 

(2-31) 

kg^/M'^s"^ = 1.4 X 10^° (36) 
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OH + CHgCHg -»• HOCHgCHg (2-12) 

= 2.1 X 10* (120)1 

OH'+ Cr^"'' -»• CrOH^* (2-32) 
aq 

= 4.8 X 10* (152) 

HOCH„CH„* + -> H0CH_CHLCr(H_0)c2+ (2-11) 
z 2 aq I L JL 3 

estimated as 1 x lO^M ^ (125) 

HOCHgCHg' + CHgCHg C^HgOH* (2-41) 

= 2 X 10^ (112)2 

2HOCH2CH2* -> H0(CH2)^0H (2-42) 

2k^2/""^®~^ = 5.6 X 10® (153,157).3 

In order to form H0CH2CH2Cr(H20)^2^, the rates of Reactions 2-14, 

2-12, and 2-11 must be optimized to compete effectively with 

Reactions 2-16, 2-31, 2-32, 2-41, and 2-42 for the reactive intermediates, 

^k^g was obtained as explained on p. 133. 

2 7 
Three different values for k^i have been reported—~ 1 x 10 (157), 

~ 2 X 10^ (112), and 3 x 10^ (153), all M~^s~^. The middle value was 
deemed the most reliable. 

3 
k^2 an average of the values in the literature (153,157). 
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High concentrations of NgO and ethylene favor formation of OH and 

HOCHgCHg radicals, but the actual concentrations which can be obtained 

are limited by the solubilities of the gases in water. To eliminate 

reactions of Cr^^ with e and OH , Reactions 2-31 and 2-32, a low 
aq aq ' 

chromium(II) concentration is suggested, but Reaction 2-11 must be able 

to compete with Reaction 2-41 and self-reaction. Reaction 2-42. 

Fortunately, nitrous oxide is quite soluble in water, 0.025 M at 

1 atm, 25°C. Reaction 2-14 would have an apparent rate constant of 

8 -1 
2.2 X 10 s in a solution saturated with NgO, competing effectively with 

H^o"*" up to concentrations of about 5 x 10 H^O^ (k^^(5 x 10 ̂ M) = 

8 - 1  -
1.2 X 10 s ) for e . Likewise, Reaction 2-31 does not constitute a 

aq 

serious loss of e^^ , when [Cr^^] is less than 1 x 10 (kg^(l x 10 ̂ M) 

= 1.4 X lO^s ^). However, the reaction of OH radicals with ethylene 

occurs at approximately the same rate as oxidation of chromium(II), 

Reactions 2-12 and 2-32. Because ethylene is not especially soluble in 

-3 o 2+ 
water, 4.41 x 10 M at 1 atm, 25 C, the concentration of Cr ion must 

aq 

be less than [ethylene], so Reaction 2-12 will predominate. Since both 

NgO and ethylene must be present in solution, the solubilities of both 

gases will decrease from that at 1 atm in accordance with Henry's law. 

So as not to limit the range of [HgO^] which could be investigated to 

lower than about 3 x 10 ̂ M, a 1 to 4 V/V dilution of ethylene saturated 

water was made with a saturated solution of nitrous oxide, resulting in 

-4 
8.8 X 10 M CHgCHg in 0.020 M NgO. Hydrated electrons are still 

effectively converted to OH radicals at this NgO concentration, 
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^14^^2^^ = 1.74 X lO^s The concentration of Cr^^ ion is limited by 

the low concentration of ethylene; 5 x 10 Cr^^ ion was chosen for 

these experiments, much lower concentrations would make scavenging of 

• 2+ 
HOCHgCHg by Cr^g, Reaction 2-11, too slow, allowing Reactions 2-41 and 

2-42 to interfere. Also, the yield of e from photochemical excitation, 
aq 

Equation 2-13, decreases as [Cr^^] does. Yet, at 5 x 10 Cr^^ 

about 60% of the OH radicals are lost to Reaction 2-32. 

2+ 
The rate of formation of HOCHgCHgCrCHgO)^ could not be determined 

in this work because it is faster than the time limitations of the flash 

photolysis instrument. The rate of formation can be estimated from 

2+ 
similar reactions of Cr^g and hydroxyalkyl radicals. Cohen and 

Meyerstein (25) have shown that the rate of reaction of several a- and 

2+ 
3-hydroxyalkyl radicals with Cr are actually quite similar, with 

aq 

second-order rate constants of (0.34-3.5) x lO^M ^s The rates were 

seen to depend slightly on the identity of the radical in a predictable 

manner, but steric effects were not particularly important. Substitu­

tion at the a-carbon with an electron-donating group decreased the rate 

of reaction with chromium(II), while an electron-withdrawing substituent 

had the opposite effect. For the 6-hydroxy-2, 2-dimethylethyl radical, 

H0(CH3)2CCH2* + Cr^q -»• HO(CH3)2CCH2Cr(H20)^^"'", (2-43) 

a rate constant of 1.0 x lO^M ^s ^ was measured (25). Since the sub­

stituants at the a-carbon are similar to those of the 3-hydroxyethyl 

radical, the rate of Reaction 2-11 should be about the same. Therefore, 
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the half-life for Reaction 2-11 will be about (1 x lO^M [Cr^^] or 
aq 

0.014 ms, because [Cr^^] is in large excess compared to [HOCHgCHg ]. 

The flash decay profile eliminates absorbance measurements to times 

greater than 0.6 ms, so the inability to detect the formation reaction is 

as expected. 

The evidence used to establish the identity of the transients 

generated by flash photolysis of the three systems is 1) the spectrum, 

2) the results of scavenging experiments, and 3) the independence of 

the transient's reaction rate with H^O on the photochemical source. 

The spectrum. Figure 2-6, consists of a maximum at 390 + 5 nm which 

is characteristic of an organochromium(III) carbon-chromium sigma bond. 

This absorption has been assigned to a d-d transition (25), 

-> ^T- (2)• The intensity of these transitions is always much 
^8 ig 

larger than most d-d absorptions (2,20,25); molar absorptivities 

-1 -1 
generally fall within the range 200 to 700 M cm . For the transient 

-1 -1 
detected from System 1, a value for e^go 450 + 100 M cm was 

estimated, which is clearly reasonable for a complex of this type. The 

2+ 
UV absorption spectrum of HOCHgCHgCrCHgO)^ is expected to consist of a 

very intense maximum, probably in the region 260-310 nm (2,20,25), due 

to a charge-transfer transition from the ligand to chromium. The 

"shoulder" at 330 nm is probably of too low an energy and intensity to 

be this transition and is more likely an artifact arising from poor 

monochromâtion of near UV light. 
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From scavenging experiments In Systems 2 and 3, the transient 

2+ 
definitely cannot be identified as HCrCHgO)^ (36), which has a 

similar absorption spectrum and rate of reaction with (see Part III). 

Methanol was used as a scavenger for hydrogen atoms in System 2, since 

it is possible visible photolysis of HOCH2CH2Co(dmgBF2)2py can produce 

H along with HOCH2CH2 , as reported for CH2Co(dmgBF2)2Py in CHClg (158). 

Since the size and decay rate of the transient were unaffected by a 

concentration of methanol sufficient to divert virtually all H atoms 

2+ 
from Cr , it can be safely concluded the transient in System 2 is not 

aq 
2+ 

HCr(H20)^ . Likewise, in System 3, when the photolysis solutions were 

saturated with N2O, no change in the transient concentration, nor 

reactivity, was detected. Since the possibility existed that a small 

2+ -
amount of photolysis of Cr was occurring, with production of e , and 

ultimately H atoms, it was necessary to determine if a scavenger 

specific for the e had any effect. While no scavenging experiments 
aq 

were carried out in System 1, the magnitude of the activation parameters 

+ 
measured for the reaction of this transient with H^O are quite different, 

^ 4= 
AS = 13.8 e.u., AH = 15.8 kcal/mol, from those for the corresponding 

2+ i i 
reaction of HCr(H20)^ , AS = -19.1 e.u., AH = 6.3 kcal/mol, providing 

2+ 
good evidence that HCr(H20)^ is not formed in this system either. 

Irrespective of the system in which it was detected, the kinetics 

of decomposition of the transient with H^O^ were shown to occur pre­

dominately, if not entirely, by a rate law involving a first-order 

dependence on both the concentration of the transient and H^O^. 
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d|j trans lent] _ [transient] (2-44) 

The second-order rate constants (k), measured in each system, are all 

of the same order of magnitude, in spite of minor differences in the 

ionic strength and temperature. For Systems 1, 2, and 3 the rate con­

stants are (1.43 + 0.02) x loV~^s"^ (u = 0.05 M, T = 24.1°C); 

(1.5 + 0.2) X loV^s"^ (0.01 M, 25 + 1°C); (3.6 + 0.4) x 10^m"^s"^ 

(0.50 M, 24.8°C), respectively. In System 3, the loss of absorbance 

with time was seen to involve two separate reactions, most reasonably 

interpreted as due to two different transients, previously designated A 

and B. The faster reacting species (A) gave a rate law of the form seen 

for Systems 2 and 3, and a value for k at least of the correct magnitude. 

Considering the method used for its extraction from the experimental data, 

and the differences in ionic strength, transient A is identified as the 

same species detected in the less complex Systems 1 and 2. Transient B 

cannot be identified on the basis of the available data. Agreement 

of the rate constants between Systems 1 and 2 is excellent. It is 

highly encouraging that the transient detected in the three systems 

• 

reacts with H^O by similar kinetics, yet each source of HOCHgCHg is 

2+ 
chemically independent, only the presence of Cr is common to all 

aq 

three. On the basis of the spectrum, scavenging experiments, and the 

kinetic data, along with the well-documented photochemistry of 

carboxylatopentaammlnecobalt(III) complexes (99,129-132), 

2+ 
alkylcobaloxlmes (125-127), and Cr ion (Part III), it is reasonable to 

aq 
2+ 

propose that H0CH2CH2Cr(H20)g has been formed in each system. 
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24" •4* 
Three mechanisms by which HOCHgCHgCrCHgO)^ reacts with H^O can be 

imagined, both consistent with the observed rate law. Equation 2-44. 

In Scheme 1 rate-determining electrophilic attack by the proton on the 

carbon-chromium bond (18,24,25,34) would result in formation of ethanol 

and Cr(H20)g3+. 

Scheme 1: 

HOCHaCHgCrtHgOls^'*' + — 
fH 2-+ 

HOCH2CH2—C r( H20)g 

3+ 
Cr(H20)6 + HOCH2CH3 

However, this scheme is inconsistent with the observed organic product; 

in System 3, ethylene, not ethanol was detected, so Scheme 1 can be 

eliminated from consideration. 

An alternative mechanism is suggested by Scheme 2, in which the 

rate-limiting step is attack of the proton at the 3-hydroxyl group of 

the organo ligand. Loss of a water molecule with simultaneous cleavage 

of the carbon-chromium bond would produce the required products. 
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Scheme 2: 

3+ 

HOCHgCHgCrdHgO)^ + H^O » 
À a 

H0-CH2CH2-Cr(H20)5 

1 
CHgCHg + + H2O 

An Interesting alternative to Scheme 2 is given by Scheme 3, in which 

the hydroxyl group and organo ligand are not lost simultaneously, but 

in subsequent steps. Reaction might proceed through a u-bonded inter­

mediate which rearranges to a more stable a-bonded alkenylchromium(III) 

ion (ky) or loses ethylene directly (k^). 

Scheme 3: 

H0CH2CH2Cr(H20)5^^ + QH2=^^-CH2 + HoO 
k _ \ + / 2+ 
® •Cr(H20)5 

CHf=CHCr(H20)5^'^-^^ CH5CH2 + Cr(H20)6^'^ 

H3O 
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If the a-alkenylchroinium(III) intermediate is formed, further pro-

tonolysis, at the carbon-chromium bond, is necessary to arrive at the 

final products. 

Scheme 3 predicts the observed rate law, Equation 2-44, if the 

steady-state approximation is made for the concentration of the 

^-intermediate. The observed rate constant, k, is then identified as a 

composite of individual terms, 

•  •  y i .  
-a D c 

If k, and k are both very large compared to k , then Equation 2-45 
D C "8 

simplifies to k - k^, and the rate of formation of the ir-intermediate 

can be considered as rate-determining. On the other hand, if ky and/or 

k are much smaller than k , rearrangement to the a-alkenyl and/or 
c —a 

loss of ethylene will be rate-limiting. It is not possible from the 

kinetic data to distinguish between these alternatives; however, it is 

possible to suggest which is more likely. It is reasonable to expect 

kj to be quite slow, similar to the slow (t^yg ~ 10-100 min) acidolysis 

of alkylchromium(III) complexes; and hence, if the a-alkenylchromium(III) 

species were formed,it would be stable on the flash photolysis time-

scale. However, it is difficult to explain the magnitude of the molar 

absorptivity of the transient calculated at 390 nm, if the metastable 

a-alkenylchromium(III) ion is formed, and not the weakly absorving 

3+ 
CrCHgO)^ ion. Consequently, it appears loss of ethylene rather than 

IT a rearrangement is more favorable; i.e., k^ » ky. The expected 



www.manaraa.com

152 

relative magnitudes of and k ^ may best be assessed after further 

consideration of the bonding in the TT-intermediate, 

Bonding of an olefin to a chromium(III) center is likely to be 

quite weak. The Dewar-Chatt-Duncanson theory describes the bonding in 

metal-alkene complexes in terms of two components. A sigma bond is 

formed from overlap of the filled pi orbitals on the olefin with a 

vacant metal orbital, and a pi bond results from back-donation of 

electrons from a filled metal orbital to pi antibonding orbitals on the 

carbon atoms. While the first mode of bonding is conceivable for 

octahedral chromlum(III), back-bonding could be of little or no 

importance (159) because the orbitals of the correct symmetry for 

* 
overlapping with the it orbitals of ethylene, the levels, are only 

half-filled. The high +3 charge on the metal center will further 

inhibit electron flow into the ethylene molecule. 

The acid decomposition of HOCHgCHgCoCdmgHOgHgO was shown to 

proceed through a n-bonded ethylenecobaloxime intermediate (118,119). 

Direct observation of this species was obtained from Fourier transfer 

NMR spectroscopy (119), It is not unreasonable that the ethylene-

cobalt complex should be more stable than that of chromium; with its 

filled tgg orbitals back-bonding from cobalt will be more effective. 

Also, electron donation from the dimethyglyoximato macrocycle reduces 

the formal oxidation state of the cobalt atom somewhat. 

For 3-hydroxyethylcobaloxime, the rate of loss of HgO,resulting 

from protonation of the 0-OH group, is several orders of magnitude 
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slower (118) than for the 3-hydroxyethylchromiuin(III) ion. The 

cobaloxime reaction was interpreted (118) by a mechanism similar to 

Scheme 3, except tt -> a rearrangement was not considered likely (k^ = 0). 

It was suggested that k » k , or that formation of the ïï-intermediate 
c —a 

was rate-limiting, on the basis of acid-cleavage reactions of similar 

3-hydroxycobaloximes, where k^/k ̂  could be directly measured (118). 

Hence, with this assumption k^ was identified with the experimentally 

determined rate constant, k, of 3.09 x 10 ̂  ̂s ^ at 25.1°C. In light 

of the above comments about the expected stability of a n-bonded 

organochromium(III) ion, it is reasonable to expect loss of ethylene from 

2+ 3+ 
[CH2CH2Cr(H20)g ] to be more facile than from the cobaloxime, and 

that formation of the TT-bonded organochromium(III) ion is rate-limiting, 

k » k . Therefore, the value of k for the reaction of 
c -a a 

H0CH^CH2Cr(H2O)J with H^O is given by the experimentally measured 

rate constant, k, of 1.43 x lO^M ^s ^ (System 1), at 24.1°C. A com­

parison of these rate constants for the organocobaloxime and the 

organochromium(III) ion reveals an enormous difference in reactivity 

towards loss of HgO from the 3-hydroxyethyl ligand. 

It is interesting that the entropy of activation, AS , for both 

the organochromium and cobaloxime reactions are similar—large positive 

numbers, 13.8 and 29.9 e.u. (118), respectively, lending further 

support to Scheme 3, for the acid-cleavage reaction of the 

organochromium(III) ion. 
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Cohen and Meyerstein suggested (25) the reaction of the analogous 

HO (CAg) gCCHgCr(HgO) ion with HgO^ proceeded by a scheme similar to 

Scheme 3, except direct loss of isobutylene (pathway k^) was not con­

sidered. Instead, the c7-isobutylenechromium(III) ion appeared to be 

formed, which then slowly underwent acidolysis to the final products— 

3+ 
isobutylene and CrCHgO)^ . Again, no direct observation of the 

ir-bonded isobutylenechromium(III) intermediate was made. The kinetics 

of both reaction steps involved a first-order dependence on the concen­

tration of the organochromium(III) ion, with observed rate constants 

given by k^^^ = k^ + k[HgO^]. For the production of O - (CHg)2C= 

CHCrCHg)^^^ from HO(CHg)gCCHgCr(HgO)individual values for k^ and k 

of 1.0 X lO^s and 1.1 x lO^M ^s respectively, were measured, 

2+ 
while acidolysis of G - (CH2)2C=CHCr(H20)g to the products occurred 

with k = 1,4 X 10 ̂ s and k = 3.9 x 10 ^s 
o ' 

The stability of the ir-bonded isobutylene-chromium intermediate 

might be expected to be less than that of ethylene, if the "normal" 

stability order for metal-olefin bonding is followed. Generally 

speaking, increasing alkyl substitution about the double bond lowers 

the stability of the complex (160). This can be explained in terms of 

increasing the electron density on the double bond which strengthens 

the a-bond to the metal, but at the expense of the tt-back-bond. For 

Cr(III) where back-bonding is probably negligible, strengthening the 

0-bond may be a more Important factor, and a "reversed" stability order 

may be operative. If it's true then than isobutylene forms a more 
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stable ir-bond to chromium(III) than ethylene, this may account for why 

ir ->• a rearrangement is observed rather than loss of isobutylene directly. 

This argument is highly speculative and the stability order may be 

affected by steric hindrance also (160). 

The oxidation of Cu^^ by HOCHgCHg", HO(CH2)CHCH2*, or HO(CH2)2CCH2* 

radicals, has been suggested (112,113) as proceeding through a 

ir-intermediate also, resulting in formation of an unstable (not 

detectable) 0-bonded alkenylcopper(II) ion. For reaction with HOCH^CHg , 

ethylene is the expected product, but this could not be ascertained (112) 

H0(R)R')CCH2 + CUgq —* HOIRjR^CCHgCUg^ 

H0(R)R')CCH2CU —*• (R%R')G=CHCU^_ 
aq I aq 

HgO 

/ 2+ 
(R)R')©=CH2 + CUgq 

since the experiments were conducted in solutions saturated with 

ethylene. However, it was clear that ethanol was not the product. 

Isobutylene was detected as the product of oxidation of Cu^^ by 

H0(CH3)2CCH2* (112). 

The acid-catalyzed decomposition of HOCH_CH_Cu"*" followed kinetics 
/ z aq 

(113) showing a first-order dependence on the organocopper(II) ion, 

with an observed rate constant given by = k^ + kEH^O^], where 
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= 3.2 X lO^s ^ and k = 3.8 x lO^M The 3-hydroxyethylcopper(II) 

complex is strikingly less stable to dehydration than the corresponding 

3 
organochromium(III) ion; the value for k differs by a factor of 10 

between the two complexes. Similarly, the CH^Cu^ ion (116) undergoes 

carbon-chromium bond cleavage by (acidolysis) about 10^^ times 

2+ 
faster than liberation of CH^ from CH2Cr(H20)g (16,18). 

In summary, all three photochemical systems were successful as a 

2+ 
source of the HOCHgCHgCrCHgO)^ ion, whose identity was established 

on the basis of its UV-visible absorption spectrum, scavenging experi­

ments, and kinetics of reaction with HgO^. System 1 is believed to be 

the most reliable source of the kinetic data, for which the second-order 

rate constant, as defined by Equation 2-44, is (1.43 + 0.02) x lO^M ^s 

at 24.1°C, y = 0.05 M. The form of the rate law can be explained by 

either Scheme 2 or 3, although the latter is favored by analogy to 

similar systems in the literature (112,113,118). In Scheme 3, the 

question of ir ->• CT rearrangement versus direct loss of ethylene, while 

impossible to answer definitively on the basis of the available data, 

is best addressed by the magnitude of the absorbance changes monitored, 

3+ 
which imply [^(HgO)^ and ethylene are formed directly via decomposi­

tion of the TT-intermediate, and not through a a-alkenylchromium(III) 

ion. Likewise, assignment of the rate-limiting step to formation of 

the TT-intermediate or to release of olefin is not possible; however, 

it is tempting to suggest that loss of ethylene (pathway k^) is favored 

over return to the 3-OH complex (pathway k ^), by attack of H^O on the 
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olefin, on the basis of the expected instability of a ïï-bonded 

chroinium(III) complex. 
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PART III. PROTONOLYSIS OF HYDRIDO(PENTAAQUO)CHROMIUM(III) ION 
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INTRODUCTION 

Statement of Problem 

As detailed in the General Introduction, organochromium(III) 

2+ 
cations of the general formula RCrCHgO)^ have been extensively studied 

over the past several years. As a result, some general theories of 

reactivity have emerged. In contrast, the hydrido analog to this family 

2+ 
of organochromium(III) complexes, HCrCHgO)^ , has been only briefly 

investigated. It was of interest to study the nature of the hydrido-

chromium bond in order to compare its reactivity with organo-complexes. 

The absence of extensive chemical studies of the hydridochromium(III) 

species probably stems from lack of a simple method of preparation of 

this highly reactive complex. Using the pulse radiolysis technique, 

2+ 
Cohen and Meyerstein (36) first generated the HCrCHgO)^ ion in aqueous 

perchloric acid. Because pulse radiolysis requires an electron 

accelerator for production of intense pulses of radiation, its use is 

limited to only a few laboratories worldwide. Therefore, it appears 

worthwhile to develop an alternative route. 

Preparation of the hydrido complex can be accomplished by the 

coupling of a hydrogen atom and a chromium(II) ion (36), 

H' + Cr^q HCrCHgO)^*^ , (3-1) 

in analogy to the synthesis of organochromium(III) cations by the 

reaction of organic free-radicals and chromium(II) ions. Generation 

of hydrogen atoms in the presence of chromium(II) ions will lead to the 
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formation of the hydrido complex. To actually observe the species, 

however, a rapid method of detection is necessary, as Cohen and 

Meyerstein (36) reported it to be highly unstable in acidic solution. 

The technique of flash photolysis is ideally suited to kinetic 

2_i_ 
studies of reactions of HCrCHgO)^ . Hydrogen atoms can be generated 

photochemically, in the presence of chromium(II) ions, by taking advan­

tage of the UV photochemistry of chromium(II) ion itself. The hydrido 

complex is easily detected by its UV absorption spectrum (36), allowing 

kinetic data to be obtained by monitoring absorbance as a function of 

time. Finally, flash photolysis is a technique which responds rapidly 

24* 
enough to allow study of some reactions of the HCr(H20)^ ion. 

It has been known for at least 40 years that irradiation of aqueous 

solutions of chromium(II) ion with UV light causes evolution of hydrogen 

gas (Ref. 154, pp. 116-117). The photoreaction proceeds with oxidation 

of the metal ion to chromium(II) ion, and concurrent reduction of the 

proton to atomic hydrogen. Production of molecular hydrogen by photo-

oxidation of ions in acidic solution has been demonstrated for a number 

of metal cations, Fe^^ (Ref. 154, pp. 159-161 and Ref. 162), Ce^^ 

(Ref. 154, pp. 317-318 and Ref. 162), Co^^ (Ref. 154, p. 193), Eu^^ 

(162,163), and V^^ (162,164). For all these ions, including Cr^^\ it 

was generally believed that the primary photochemical process involved 

formation of a hydrogen atom. 

hv 
MKHgO)^" » M(H20)g(0H)"'*' + H* (3-2) 
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2+ 
In more recent years, however, absorption of UV radiation by Fe 

aq 

(165,166) or Cr^^ (165,167,168) ions, is now believed to lead to a proc-
aq 

ess in which an electron is ejected from the cation to the solvent, 

forming the hydrated electron and oxidized metal ion. Hydrogen atoms 

are produced from e^^ in a secondary reaction by the reduction of 

protons, 

74-
' "<«20)6 + • (3-3) 

e _ + H-O* a + H,0 , (3-4) 
aq j Z 

for which = 2.3 x lO^^M ̂ s ^ (123). The rate of Reaction 3-4 is so 

rapid that even in dilute acid, 1 x 10 H^O^, the hydrated electron 

has a half-life of only 0.03 ys. Irrespective of the nature of the 

primary photoreaction, molecular hydrogen is formed by dimerization of 

H*, 

2H* -V Hg , (3-5) 

accounting for the observed product. 

2+ 
For Cr ion, Hartmann et al. (167) obtained indirect evidence for 

aq 

process 3-3 by trapping experiments. In some product studies, aqueous 

chromium(II) perchlorate at pH 2.6 was photolyzed with UV light in the 

presence of nitrous oxide, known to be an efficient scavenger for 

hydrated electrons. 

®aq" ^2° ̂  Ng + o" (3-6) 

kg/M"^s~^ = 8.7 X 10^ (121) 
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0~ + HgO ç=! OH* + OH" (3-7) 

pK^ = 11.9 + 0.2 (122) 

Nitrogen gas was detected as one of the products, presumably formed by 

Reaction 3-6. This result, coupled with a study of the ratio of to 

Ng produced as a function of nitrous oxide concentration, gave further 

evidence for the hydrated electron. As [NgO] was increased, the ratio 

HgZNg decreased as expected for a competition between Reactions 3-4 and 

3-6 for e . Although there appears to be no report in the literature 
aq 

for the direct observation of the hydrated electron from the UV photoly-

2+ 
sis of Cr , the product studies of Hartmann et al. (167) provide 

aq 

unequivocal evidence for its existence. 

The photolytic process responsible for production of a hydrated 

electron results from absorption of light by an ion's charge-transfer-

to-solvent, CTTS, transition. Well-documented examples of photoelectron 

production from CTTS excitation exist for several anions—the simple 

halides, CI , Br , I , and pseudohalide NCS ; oxo anions, SO^^ , , 

2- - 2- 2- 2-
SgOg , HgPO^ , HPO^ , PgO^ , COg (169); and anionic metal complexes 

Fe(CN)g^~ (Ref. 154, pp. 148-151 and Refs. 162,170), Ru(CN)g^~ (Ref. 154, 

p. 308 and Ref. 170), W(CN)g^" and Mo(CN)g^~ (Ref. 154, pp. 124-127 and 

Refs. 162,170), IrClg^" (Ref. 154, p. 311 and Ref. 170), CuClg" and 

2- -
CuClg (171,172). Basco et al. (173) also reported e^^ production from 

photolysis of some monovalent metal cations, Co"^, Ni"'", Zn^, and Cd"*". 

Although the assignment of the CTTS transition in metal complexes is 



www.manaraa.com

163 

often difficult due to overlap with other charge-transfer transitions 

2+ 
in the same spectral region, the CTTS transition of Cr ion in aqueous 

aq 

HCIO^ has been assigned (165) to a well-defined shoulder at 270 nm, 

superimposed on a large absorption extending further into the UV. The 

-1 -1 
molar absorptivity at 270 nm is a rather small number, ̂  15 M cm (155). 

The efficiency of formation of e^^ from UV photolysis of Cr^^ can 

be inferred from the data of Collinson et al. (124). These workers 

measured the quantum yield^ of hydrogen formation, ^(Hg), for irradiations 

at 254 and 265 nm of aqueous solutions of chromium(II) ion in hydro­

chloric acid. At low HCl concentrations, where Cr(II) ion is present 

2+ 
r 
aq 
2+ 

as the uncomplexed Cr^ , ̂ (5^)= 0.13 was reported (124). Since ̂ (Hg) is 

stated to be one-half of (j>(Cr^), and <j)(Cr^^) must equal <j)(e ), the 

quantum yield for hydrated electron production is 0.26. This result means 

that 26% of the excitations of the CTTS band are productive in generating 

2+ 
e a reasonably efficient process. Aqueous Cr ion satisfies at 
aq aq 

least one of the important criteria for use as a photochemical source 

of hydrated electrons—the quantum yield for e is appreciable; however, 
aq 

the CTTS transition has a rather low molar absorptivity, resulting in 

poor light absorption of wavelengths necessary to initiate the desired 

photochemistry. An additional advantage offered by this source of e 
aq 

Quantum yield is a measure of the efficiency of a photochemical 
process. For product formation, it is defined as the number of species 
formed divided by the number of photons absorbed. 
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3+ 
is the formation of CrCHgO)^ as a by-product. By virture of its 

relative inertness, no complicating side-reactions are possible. 

Review of Similar Transition Metal Hydrides 

The widespread interest in transition metal hydrides results from 

their involvement as reactive intermediates in the activation of 

molecular hydrogen (174-180). One of the earliest observations of a 

homogeneous catalyzed hydrogénation reaction was made by Calvin in 1938 

(181). He reported that copper (I) acetate, in quinoline solution, 

catalyzed the reduction of benzoquinone and copper(II) ions by molecular 

hydrogen. Peters and Halpern (182,183) and Halpern et al. (184) 

investigated the catalysis of the reduction of dichromate ion, in 

aqueous perchloric acid, by copper(II) ion. On the basis of the kinetic 

results, a hydridocopper(II) intermediate was postulated, arising from 

the heterolytic cleavage of the hydrogen molecule. 

Cu^* + «2^=^ CuH"*" + H"*" (3-8) 

In a subsequent reaction, copper(I) ion was formed which was believed to 

be the species responsible for the reduction of . 

CuH"^ + Cu^"*" ->• 2Cu* + H"*" (3-9) 

3Cu'^ + Cr(VI) ->• SCu^"*" + Cr(III) (3-10) 

In other work, copper(I) Itself was shown to be capable of reacting 

directly with molecular hydrogen, forming CuH from a heterolytic split­

ting of Hg (174). 
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A similar catalysis by silver(I) ion was seen by Webster and Halpern 

(185) to occur by two pathways in which the hydrogen molecule is-acti­

vated. At higher temperatures, a heterolytic cleavage of Hg forms the 

intermediate AgH. 

Ag"*" + AgH + h"'" (3-11) 

A homolytic cleavage is favored at lower temperatures. 

ZAg"*" + Hg + 2AgH'^ (3-12) 

Although both mercury(II) and mercury(I) ions are capable of 

catalyzing the homogeneous reductions of molecular hydrogen, there is 

no evidence for the participation of hydride intermediates (186). 

Instead, Korinek and Halpern (186) proposed a two-electron process, 

for Hg(II), 

Hg^"*" + Hg + Hg° + ZH"^ , (3-13) 

and for Hg(I), 

Hgg^^ + Hg + 2Hg° (or Hgg) + 2H'^ , (3-14) 

in which the mercury cation is reduced to elemental mercury by Hg in an 

electron-transfer process. Similar processes for Cu(II) or Ag(I) were 

shown (187) to be thermodynamically unreasonable. 

Many metal complexes also have the ability to catalyze homogeneous 

hydrogénations, with formation of intermediate hydrido species. Some 

earlier examples are HRuCl^^ , HRhCl^^ , HCo(CN)^^~, IrH2Cl(C0)(PPh2)2 

2_ 
and HPdClg (174,175). Several additional complexes have been found 
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to be catalytically active towards hydrogen, serving as useful homoge­

neous catalysts for the reduction of organic compounds. Many reviews and 

books dealing with this active area of research have appeared (176-180). 

The advent of pulse radiolysis made possible the study of unstable 

transition metal hydrides. Hydrogen atoms are easily generated in the 

presence of the metal ion to produce the hydrido complex. 

+ H* ^ MH""*" (3-15) 

In general, the pulse radiolytic technique has been applied more to the 

study of aquated metal ions than metal complexes (188,189). As discussed 

2+ 
earlier, the HCrCHgO)^ ion is one such intermediate which has been 

+ 
prepared by pulse radiolysis, and its reaction with H^O to produce Hg 

3+ 
and Cr(H20)g ions studied (36). 

HCr(H20)g2+ + H3O"'" + Hg + Cr(H20)g3+ (3-16) 

The species formed by reaction of a hydrogen atom with the iron(II) ion 

2+ 
was first proposed (190,191) to be HFe(H20)^ , which was later confirmed 

(192,193) by pulse radiolysis. This hydrido species also reacts with 

to liberate molecular hydrogen and iron (III) ion, the kinetics of 

which have been determined (192,193). 

HFeCHgO)^^* + HgO* + FeCHgO)^^* (3-17) 

3+ 
HTi was detected recently (194-196), and its decomposition in acidic 

aq 

solution to H2 and Ti(IV) ions briefly studied (196). 

HTi^q + HgO'*' +H2 + TidV)^^ + H2O (3-18) 
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In its reaction with Cr , Fe , and Ti(III) the hydrogen atom 
aq aq 

has been shown, in the above studies, to act as an oxidizing agent 

towards these reducing metal ions. Using radiolysis to generate atomic 

hydrogen, several other metal ions have been found which are also 

2+ + 
oxidized by hydrogen atoms, namely V (197); Pu(III) (198); Cd and 

Ni^ (199); Ni(CN)^^ (200); and Al^^ (201). This is somewhat unusual 

as hydrogen atoms are generally considered as strongly reducing 

(E° = -2.1 V (202)); for instance hydrogen atoms can reduce Ce(lV), 

Tl"^, and Cu^"^, but not Co^^, Ni^^, Mn^^, Cd^^, Pb^^, or Co (III) ammines 

(203). 

A study using flash photolysis to form a hydrido complex was 

recently reported. Ferraudi (172) showed UV photolysis of acidic solu-

2-
tions of CuClg produces the transient HCuCl^ species by reaction of 

the substrate with photochemically generated hydrogen atoms. Excitation 

of the CTTS transition of CuClg was reported to lead to photoelectron 

production, which are scavenged by ions to form hydrogen atoms. 

Certainly photochemical production of hydrated electrons is a 

convenient source of hydrogen atoms. Presumably, flash photolysis has 

a promising future as a technique complementary to pulse radiolysis 

for the study of reactive hydrido Intermediates. 
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EXPERIMENTAL 

Materials 

Cr(C10^)2 

Aqueous solutions of chromium(II) perchlorate were prepared from 

the metal by oxidation with perchloric acid. Chromium pellets of 

99.999% purity (Apache Chemicals, Inc.) were pretreated with 1 M HCl by 

warming with a heat gun until gas evolution began. The pellets were 

quickly rinsed with water and rapidly introduced into 5 M HCIO^, while 

flushing with nitrogen (204). In order to obtain solutions with a pH 

of 2 or greater, a slight stoichiometric excess of metal was used (36). 

After several hours, when evolution of hydrogen had ceased, the sôlution 

Cr^ + 2HC10^ -> Cr(C10^)2 + (3-19) 
® aq 

was withdrawn from the unreacted chromium, and diluted to about 0.2 M 

2+ 2+ 
Cr^q. The concentration of Cr^^ ion was determined spectrophotometrically 

by measuring the absorbance of the broad maximum around 715 nm, using 

e = 4.85 M"^cm"^. 

The perchloric acid concentration was determined by titration. 

An aliquot of the solution was first air-oxidized, converting the 

chromium(II) ion to the hydroxo-bridged dimer of chromium(III) (75), 

and then applied to a column of Dowex 50W-X8 cation-exchange resin in 

2Cr2+ + Og = [(H20)^Cr(0H)2Cr(H20)^]'^"*' (3-20) 



www.manaraa.com

169 

the acid form. Elution was accomplished with water and continued until 

the eluent was no longer acidic by pH paper. The eluent was titrated 

with standardized NaOH solution to a phenolphthalein end-point. The 

amount of acid present in the chromium(II) perchlorate solution was 

calculated from the total amount titrated by the following equation, 

t»''lcr(ci0,)2 • '"^'titrated * • "-21) 

where 4[Cr(III)] is equivalent to the amount of acid displaced from the 

ion-exchange resin by the +4 charged chromium(III) species. The concen­

tration of the dimeric chromium(III) complex, after air-oxidation, was 

calculated from the concentration of chromium(II) ion, before oxidation, 

plus any chromium(III) present originally, determined by its visible 

spectrum. Typically, solutions millimolar in HgO^ were obtained. 

CHgCrCHgO)^^^ 

Aqueous solutions of this organochromium(III) ion were prepared 

by the chromium(II) reduction of t-butyl hydroperoxide in dilute 

perchloric acid (20). 14 yl 70% (CHg)gCOOH (7.3 M) (Aldrich) were 

2+ 
injected dropwise into 5.2 mL aqueous 0.037 M Cr^^ in 0.045 M HCIO^. 

2+ ""3 
The concentration of CHgCr(H20)g produced was 7 x 10 M as determined 

by its absorbance at 392 nm, with e = 246 M ^cm ̂  (20), after correction 

3+ 
for the absorbance due to [^(HgO)^ . The product solution was used as 

such, without ion-exchange chromatography, with the knowledge that 

3+ 
[^(HgO)^ and organic by-products are innocuous in the reaction 

investigated. 
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HCIO^, NaOH, LiClO^ 

Aqueous solutions were prepared and standardized as described in 

Part I, Experimental. 

Gases 

Nitrous oxide, Matheson, 98.0% minimum purity, and nitrogen. 

Air Products, were used to saturate solutions. Trace amounts of Og 

2+ 
present in either gas were removed by passing through Cr scrubbing 

aq 

towers. 

Methods 

Flash photolysis 

Preparation of solutions Aqueous perchloric acid was adjusted 

to the desired ionic strength by the addition of standardized LiClO^. 

The ionic strength was calculated from Equation 3-22. 

y = I {[H2O+] + [Li+] + 4[Cr2+] + [C10^~]} (3-22) 

After transferring to a 10 cm quartz spectrophotometric cell, and seal­

ing with a rubber septum, solutions were saturated with nitrogen gas, 

or in some experiments, NgO. Prior to a flash photolysis experiment, 

a small aliquot of Cr(C10^)2 solution was injected into the cell, such 

that [Cr^"'"] = 1 X 10 after dilution. 
aq 

2+ 
In experiments designed to produce DCrfDgO)^ and study its reac­

tion rate with aqueous Cr(C10^)2 was injected into a large volume 

of DgO, acidified with 5 M standardized HCIO^, Photolysis solutions 
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were typically 1-3% H^O or 0.75-1.7 M HgO. At such high molarities 

of DgO, 53.4-54.4 M, essentially all, 98%, of the ions are converted 

to D^o"*" via equilibrium (23). 

ZHgO* + SDgO = 2D3O"'' + SHgO (3-23) 

1/K(23) (25°C) = 11.0 (205) 

Ionic strength was not maintained at a constant value while was 

varied. 

Temperature control See Part II, Experimental. 

Equipment Details of the instrument and data analysis are 

given in the Appendix. 

Spectrum of transient See Part II, Experimental. 

Conventional kinetics 

The reaction of CHgCr^HgO)^^^ with H^O^ or of CH^CrCDgO)^^^ with 

DgO was initiated by injecting a small aliquot of a stock solution 

2+ 
contalning CHgCrCHgO)^ into thermally equilibrated 0.1 M HCIO^ or 

-4 
DCIO^ (in DgO) to arrive at [organochromium(III) ion]^ = (2-6) x 10 M. 

Reactions in D^O contained 6.9% HgO or 3.8 M HgO. As discussed above, 

+ + 
the HgO ions are effectively present as D^O ions; a 94% conversion is 

calculated from equilibrium 3-23 at 51.4 M DgO. Some reactions were 

carried out under a nitrogen atmosphere, in the presence of 

(1-2) X 10 Cr^\ and others in air; no effect on the reaction rate 
aq 

was noted. 
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The kinetic results were obtained by monitoring the loss of 

absorbance with time at 258 or 300 nm, where the organochromium(III) 

ion absorbs; because the rates are very slow, the turret assembly of a 

Gary 219 spectrophotometer was programmed to record absorbances at 

time intervals of several minutes. Kinetic cells were thermostatted 

by water circulating through the turret. Pseudo-first-order rate 

constants were obtained by plotting &n(D^ - D^) versus time. The slope 

of such a plot, often obtained by least-squares treatment of the data, 

is -k , . 
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RESULTS 

Detection of Transient 

Flash photolysis of 1 x 10 chromium(II) perchlorate, in dilute 

perchloric acid, with a 250 J flash, produced a transient which was 

2+ 
detected at 380 nm, the reported (36) maximum of the HCr^HgO)^ ion. 

During the decay of the scattered flashlight, about 0.6 lus, an absorbance 

grew in which then decreased, at a rate dependent on the acid concentra­

tion, to a final absorbance slightly larger than before photolysis. 

The size of the transient was found to be directly dependent on the 

energy of the flash, as shown in Figure 3-1. This confirmed the tran­

sient was formed as a result of a reaction directly dependent on the 

intensity of the photolyzing flash. 

Effect of Scavengers 

NgO 

Saturating the photolysis solution with nitrous oxide, instead of 

nitrogen gas, decreased the amount of transient produced. A 250 J 

flash on 1 X 10 Cr^^ in 1 x 10 HCIO, produced a maximum absorbance 
aq 4 

change of only 0.0044 (Z = 10 cm) at 380 nm in the presence of NgO, as 

compared to 0.020 in its absence. If one tentatively assigns the 

2*4" 
identity of the transient to HCr(H20)^ , then the concentrations can 

-1 -1 
be computed using the published molar absorptivity = 190 M cm 

(36). NgO reduces the yield of the transient from 1.0 x 10 to 

2.3 X 10 ̂ M, a 77% decrease. 
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100 200 
Energy/J" 

300 

Figure 3-1. 
2+ 

Dependence of the absorbance due to HCr(H20)g at 380 nm 
on flash energy. Cell length = 10 cm; 1 x 10"^ absorbance 
unit is approximately 2 iriV 
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CHgOH 

Scavenging experiments were also designed to trap hydrogen atoms by 

photolysis in aqueous 5 M methanol,="0.1 M. At 380 nm, no 

transient absorbance changes were detected, only a permanent decrease 

in the photomultiplier voltage,.The UV-visible spectrum of the solution 

was recorded after flashing, and consisted of a maximum at .390 nm, and 

an ill-defined shoulder at about 280 nm, possibly indicating formation 

2+ 
of the hydroxymethylpentaaquochromium(III) ion, HOCHgCrCHgO)^ , which 

has maxima at 392 and 282 nm (22,25), 

To help in identifying the species, the rate of its decomposition 

•"3 
in 0.1 M HCIO, was measured. A solution containing 1 x 10 M Cr 

4 aq 

and 0.1 M HCIO^ in 5 M CH^OH was photolyzed with several 250 J flashes, 

and the absorbance monitored at 392 nm with time. Rather than the simple 

loss of absorbance expected, there was an indication that a faster 

reacting species, also absorbing at 392 nm, was present. After its 

reaction was complete, however, the remaining loss of absorbance gave a 

pseudo-first-order rate constant of (8.9 + 0.2) x 10 "^s ^ at 25.0°C. 

2+ 
In 0.1 M HCIO^, authentic H0CH2Cr(H2O)^ reacts with an observed rate 

constant of k/s ^ = 7.1 x 10 in a 50:50 CH^OH to H^O mixture adjusted 

to an ionic strength of 1.0 M (16), Considering the medium differences, 

the rate constants are in reasonable agreement, establishing that the 

2+ 
H0CH2Cr(H2O)g complex is formed upon photolysis of chromium(II) ion 

in aqueous, acidic methanol. The identity of the other, faster reacting 

species was not established. However, taking into consideration that 
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the solution was photolyzed several times, the secondary product may 

2+ 
arise from secondary photolysis, perhaps of HOCHgCrCHgO)^ formed in 

prior flashes. 

Rate of Reaction of HCrCHgO)^^^^ with 

Dependence on [H^o"*"] 

The dependence of the rate of decomposition of the transient on the 

concentration of acid, was investigated by monitoring the decrease of its 

absorbance with time as a function of in the range 0,01-0.20 M. 

Ionic strength was maintained at 0.20 M, and the temperature was 

26.0 + 0.5°C. Most of the kinetic data were collected at 380 nm 

because the largest absorbance changes were found to occur in this 

region. A few kinetic traces were also obtained at 330 and 420 nm, and 

at lower flash energies, 125 and 75 J. 

Oscilloscope sensitivities of 5 or 10 mV/d (I^ = 1000 mV) and time 

4" 
bases of from 0.2 to 5 ms/d (depending on [H^O ]) were used to follow 

the transients. Representative photographs of the transient decay, at 

four different [H^o"*"], are reproduced in Figure 3-2. The kinetic data 

were analyzed according to a pseudo-first-order treatment in transient 

concentration, by plotting &n(D^ - versus time. Linear plots are 

obtained at all acidities, wavelengths of monitoring, and flash energies. 

In Figure 3-3, the rate plots corresponding to the photographs in 

^D' is linearly related to D, see Appendix. 
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Figure 3-2. Representative photographs of oscilloscope traces showing the reaction of HCr(1120)5 
vlth HgO'*' at various acidities. Monitoring X = 380 nm; flash energy = 250 J; 
U = 0.20 M (110104); IQ = 1000 mV; I^^(mV) = 950 (a), 960 (b), 994 (c), 975 (d) 
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a) O.OIOM HgO^ 

5 ms/d 

c) 0.080M H,0 

0.5 ms/d 

b) 0.030M H^0+ 

Ims/d 

d) 0.20M H^0 + 

0.2 ms/d 
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a) 0.01 OM H3O+ b) 0.030M H3O"*" 

8 16 24 
t/ms 

t/ms 

0 0.080M d)a020M H3O+ 

t/ms 

0 OA Q8 1.2 1.6 
t/ms 

Figure 3-3. Plots of &n(D' - D^) versus time for photographs of 
Figure 3-2 
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Figure 3-2 are given. The pseudo-first-order rate constants, are 

listed in Table 3-1 at the various acidities. 

The experimental rate constant, k^^^, shows a linear dependence on 

the perchloric acid concentration, as evidenced by a plot of k^^^ versus 

Figure 3-4. 

"obs = K + »-24) 

The slope of the line in Figure 3-4 is identified with k of Equation 3-24 

and k^ is given by the intercept. A least-squares fit of the data 

yields k^/s ^ = -57 + 46 so it is assigned a value of zero. The value 

4-
for k was obtained by dividing each entry in Table 3-1 by [H^O ] and 

averaging to obtain k/M ^s ̂  = (9.7 + 1.0) x 10^. This suggests the 

transient decomposes by exclusively an acid-dependent path. Contribu­

tion from an acid-independent route appears to be negligible from the 

results at these acidities. Measurement of the rate of reaction at very 

low would be necessary to prove the existence of an acid-

independent term in the rate expression. However, it is definitely an 

_3 
unimportant reaction pathway at acidities greater than about 10 M. 

Effect of temperature 

The temperature dependence of the reaction of H^O with the 

transient was investigated by determining its rate over a 34° range in 

temperature. The acidity was maintained at 0.01 M HCIO^, and the 

absorbance was monitored at 380 nm following a 250 J flash. 
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2+ 
Table 3-1. Rate constants for the reaction of HCrCHgO)^ with H^O 

0.010 94. 7 + 4.6 (4) 

0.010^ 95.4 + 4.4 (3) 

0.010^ 101. 0 + 7.3 (3) 

0.010^ 104. 0+2.1 (3) 

0.010® 94.0 + 6.3 (3) 

0.030 283. 0 + 6.6 (3) 

0.050 423 + 63 (5) 

0.060 576 + 49 (2) 

0.080 630 + 46 (3) 

0.10 931 + 58 (6) 

0.13 1330 + 45 (3) 

0.15 1365 + 190 (3) 

0.17 2010 + 90 (3) 

0.20 2200 + 560 (6) 

^Uncertainties represent iCT; number in parentheses is number of 
kinetic runs; monitoring \ = 380 nm; flash energy = 250 J, except as 
noted; y = 0.20 M (LICIO4); [Cr^+j = 1 x 10-3 M; T = 26.0 + O.5OC. 

^330 nm. 

^%20 nm. 

^125 J. 

®75 J. 
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2000 

1000 

Figure 3-4. The dependence of on for the reaction of 
HCrCHgO)^?* with H3O+ 
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Values of the second-order-rate constant k, determined at each 

temperature, are tabulated in Table 3-2. The rate constant k was 

analyzed as a function of temperature using the Eyring equation, 

derived from the activated complex theory of absolute reaction rates, 

( "0") ' (3-25) 

where 

N = Avogadro's number 

h = Planck's constant 

T = Absolute temperature 

R = Gas constant 

AS^ = entropy of activation 

AH^ = enthalpy of activation. 

As Equation 3-25 predicts, a plot of &n k/T versus 1/T should be linear 

"I" 
with a slope given by -AH /R and [&n(R/Nh) + (AS /R)] as the intercept. 

Treatment of the data from Table 3-2 accordingly resulted in a straight 

line, as shown in Figure 3-5. A least-squares fit of the data to 

Equation 3-25 gives AH = 6.3 + 0.2 kcal/mol and AS = -19.1 +0.7 e.u. 

Effect of ionic strength 

The variation of the rate constant for the reaction of with 

the transient was also investigated as a function of ionic strength, 

for the purpose of substantiating that it is correctly formulated as a 

dipositive cation. At a perchloric acid concentration of 0.01 M, the 

ionic strength was varied from 0.013 to 0.20 M by the addition of 
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2+ + 
Table 3-2. Rate constants for the reaction of HCrCHgO)^ with H^O 

at various temperatures^ 

T/°C 10"\/M"^s"^ 

14.4 0.637 + 0.043 

14.7 0.616 + 0.086 

20.5 0.800 + 0.048 

27.0 1.02 + 0.035 

35.5 1.50 + 0.020 

48.1 2.17 + 0.056^ 

Uncertainties represent la of three replicate runs, except as 
noted; [H3O+] = 0.01 M; [Cr2+] = 1 x 10-3 m; y = 0.20 M (LiClO^); 

monitoring A = 380 nm; flash energy = 250 J. 

^Average of two duplicate runs. 
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Figure 3-5. Plot of &n(k/T) versus 1/T for the reaction of 
HCr(H20)52+ with H3O+ 
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LiClO^. Ionic strength was calculated from Equation 3-22. A value 

at y = 0.008 M was also obtained by lowering [HgO^] to 0.005 M. The 

data were treated according to Equation 3-26, 

2Z Zayl/2 

log k = log k° + yT) • (3-26) 
1 + gay^'^ 

The Br^nsted-Debye-Huckel equation (Equation 3-26) was presented 

earlier, in Part I, Results; that discussion will not be repeated here. 

The rate constants obtained as a function of y are collected in Table 3-3 

and the plot suggested by Equation 3-26 is given in Figure 3-6, where 

Ba has been taken as unity. 

The line on the graph has been drawn to the theoretical slope of +4 

as expected for reactants of charge +2 and +1. While data points at the 

lower ionic strengths approximate a line with slope +4 quite well, 

negative deviation occurs at ionic strengths greater than about 0.07 M. 

This is not surprising as the Debye-Hlickel expression is generally 

useful only in dilute solutions, at ionic strengths less than 0.01 M. 

To extend its useful region, a term linear in ionic strength (77-81) is 

often added, so Equation 3-26 becomes, 

2Z Zayl/2 

log k = log k° + r-jy " Cy. (3-27) 
1 + gay^/^ 

The kinetic data were fit to Equation 3-27 using a least-squares com­

puter program^ which allowed k°, 2Z^Zg, and C to be treated as adjustable 

^The least-squares program was one implemented by Dr. R. B. Pfaff, 
Ames Laboratory. 
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Table 3-3. Rate constants for the reaction of HCr(1120)5^"'' with 
at various ionic strengths® 

y/M 10-\/M"^s"^ 

0.008^ 5.44 + 0.34 (3) 

0.013 5.18 + 0.15 (6) 

0.018 6.05 + 0.25 (3) 

0.023 5.80 + 0.14 (6) 

0.028 6.08 + 0.16 (3) 

0.033 6.60 + 0.34 (6) 

0.043 7.40 + 0.33 (3) 

0.053 7.34 + 0.20 (5) 

0.073 7.76 + 0.54 (3) 

0.103 8.60 + 0.59 (6) 

0.153 8.92 + 0.52 (3) 

0.203 9.79 + 0.55 (6) 

^Uncertainties represent la; number in parentheses is number of 
kinetic runs; [H3O'*'] = 0.01 M, except as noted; [Cr^+j = 1 x 10"^ M; 
y adjusted with LiClO^; monitoring X = 380 nm; flash energy = 250 J; 
T = 26.7 + 0.30c. 

= 0.005 M. 
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Figure 3-6. Plot of log k versus 0.509y /(L + y 5 for the reaction of 
HCr(H20)^2+ with HgO"!". The line is drawn to have a slope 
of +4 
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parameters. Setting 3a = 1, the following values were obtained, 

= (3.8 + 0.3) X 10^ 

2Z.Z„ = 3.3 + 0.6 
A B — 

C = 0.5 + 0.3. 

Within its stated uncertainty, is approximately 4. The value for 

the constant C is of a reasonable magnitude (81). 

Effect of deuterium substitution 

2+ 
DCr^DgO)^ To obtain additional mechanistic information about 

the cleavage of the hydrido-chromium bond by H^O , the deuterated complex 

was made, and its effect on the reaction rate studied. Formation of 

hydrated electrons in acidified deuterium oxide, leads to deuterium atoms, 

ej + DgO -+ D + DgO , (3-28) 

k2g/M"V^ = (1.71 + 0.09) X 10^° (206) 

with a rate 26% slower than the analogous production of H atoms. 

Reaction 3-4. In a secondary reaction, deuterium atoms will react with 

2+ 
chromium(II) ions to generate DCr(D20)^ » 

D* + Cr2+ DCr(D_0)c2+ . (3-29) 
aq / 3 

The rate of Reaction 3-29 has not been measured, but is too rapid to 

follow by conventional flash photolysis. 



www.manaraa.com

189 

The rate of Reaction 3-30 was investigated 

DCrCDgO)^^* + + Dg + CrCDgO)^^^^ (3-30) 

over a range of [D^O^] = 0.01-0.1 M, in D^O containing 1-3% HgO, by 

monitoring the absorbance at 380 nra as a function of time. The ionic 

strength was not maintained at a constant value, independent of [DgO ]; 

it was calculated for any given solution using Equation 3-22. The rate 

2+ 
of reaction has a pseudo-first-order dependence on [DCr(D20)^ ] as 

evidenced by linear pseudo-first-order rate plots obtained with a large 

excess of D^O^. The reaction also appears to have the expected first-

order dependence on [D^o"*"] as suggested by an approximately linear plot 

of versus [D^O^], curved somewhat by the variation in ionic 

strength. The rate constants obtained as a function of [D^O^] and ionic 

strength are given in Table 3-4. 

2'h 4" 
The rate of reaction of the DCrCDgO)^ complex with D^O is 

conveniently compared to that of the HCr(H20)^^^ ion with H^o"^ by 

examination of Figure 3-7, where the second-order rate constants have 

been plotted as a function of ionic strength on Figure 3-6. The data 

obtained for the deuterated complex is seen to approximate a line of the 

24" "h 
same slope as for the reaction of HCrCHgO)^ with H^O , indicating 

similar charges on the reactants. Again, curvature is seen at the 

higher ionic strengths, y > 0,08 M, as for the hydrido complex. The 

datum point at y = 0.014 M appears to be anomalous. The rate of reaction 

+ 
of the deuterated complex with D^O is much slower than the reaction in 

HgO. Extrapolation to zero ionic strength affords values for k° of 

I 
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Table 3-4. Rate constants 2+ 
for the reaction of DCrCDgO)^ 

+a 
with DgO 

[DgO+j/M y/M 10~\/M"^s"^ 

0.00995 0.014 13.8 + 0.1 (2) 1.39 + 0.01 

0.0295 0.032 42+3 (3) 1.4 + 0.1 

0.0487 0.054 81+8 (3) 1.7 + 0.2 

0,0686 0.074 130 + 10 (3) 1.9 + 0.1 

0.0988 0.104 200 + 20 (3) 2.0 + 0.2 

^Uncertainties represent IC; number in parentheses is number of 
kinetic runs; 1-3% H2O in D2O; [Cr|+] = (1-2) x 10~3 M; y calculated 
from Equation 3-22; monitoring X = 380 nm; flash energy = 250 J; 
T = 21.60C. 
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Figure 3-7. Plot of log k versus 0.509p^^^/& + for the reaction of 
HCr (HnO) with H3O+ (open ana i)Cr (020)52+ with 
D3O+ (solid circles). The lines are drawn to have a slope 
of +4 
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3.2 X loV^s"^ for HCrCHgO)^^* 4- H^o"^ and 6.7 x 10^~^s"^ for 

DCrCDgO)^^^^ + DgO"^ or a ratio of k°y/k°p = 4.8 + 1.2. 

2+ 
CHgCrCHgO)^ To assess the contribution of the solvent change 

from HgO to DgO to the magnitude of the isotope effect measured, the 

2+ + 
rate of reaction of CHgCrCHgO)^ with H^O was compared to that of 

CHgCrCDgO)^^^^with in DgO (6.9% HgO). This system was chosen for 

study because of the presumed similarity between H- and CH^-ligands, 

and also its reaction with obeys a rate law similar (16) to the 

reaction of with the hydridochromium(III) ion. 

CH2Cr(H20)g2+ + H^O"*" -+ CH^ + Cr(H20)g^"^ (3-31) 

-d[CH Cr^"^] 2+ 
. k,i[H,0 ][CH,Cr ] 

k2^(25°C, y = 1.0 M)/m"^s"^ = 4.94 x lO"^ (16) 

Product studies (15,18) have shown CH^D is formed when the reaction of 

CH2Cr(H20)^^"'' with is carried out in D2O as a solvent. 

At [HgO^ or D^O^] = 0.1 M = ]i, and T = 24.8°C, the absorbance of 

the methylchromium(III) ion at concentrations of (2-6) x 10 was 

monitored with time. Second-order rate constants were obtained from 

pseudo-first-order rate constants by division by or , and 

are tabulated in Table 3-5. DgO can be seen to retard the rate by a 

factor of kg/k^ = 6.3 + 0.3. 
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Table 3-5. Deuterium isotope effect on reaction rate constants 

Reaction k/M"^s~^ 

HCrCHgO)^^^ + h30+ 3^ 
3 .2  x  10  

DCrCDgO)^^"*" + d30+ 2^  
6 .7  x  10  

chgcrchgo)^^^ + H^O"*" ( 6 . 2  +  0 .2 )  x  10"^  (5 )^  

chgcrcdgo)^^^ + dgo"*" ( 9 . 9  +  0 .1 )  x  10"4  (3 )b  

^Value at y = 0, obtained by extrapolation (Figure 3-7); monitoring 
X = 380 nm; flash energy = 250 J; T = 21.6°C. 

% = 0.1 M; = 0.1 M; monitoring A = 285, 392 nm; T = 24.8°C; 

uncertainties represent ICT; number in parentheses is number of kinetic 
runs. 
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Spectrum of Transient 

The spectrum of the transient in 0.01 M H^O was obtained in the 

region 320-450 nm, and is reproduced in Figure 3-8. A maximum occurs 

at 385 + 5 nm and a minimum at 350 + 5 nm, followed by a rising absorb--

ance into the UV region. Since optical restrictions limited measurement 

of UV absorbances to wavelengths 2 310 nm, the spectrum could not be 

obtained further into the UV. 
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Figure 3-8. The electronic spectrum of the HCr(1120)3 ion. Cell 

length = 10 cm; flash energy = 250 J. Values of e are 

relative to e^so ~ M~^cm"^ 
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DISCUSSION 

Assignment of Identity of Transient 

The transient generated by flash photolysis of aqueous, acidic 

solutions of chromium(II) perchlorate can be identified as the 

2+ 
HCrCHgO)^ ion on the basis of the following results; 1) its 

UV-visible spectrum is in agreement with that published (36) for 

prepared by pulse radiolysis; 2) the yield of HCr 

was decreased or eliminated altogether upon addition of NgO or methanol, 

known scavengers for e and H , respectively; 3) the rate law and 
aq 

rate constant for Reaction 3-16 is in reasonable agreement with prior 

work (36); and 4) the dependence of the rate of Reaction 3-16 on ionic 

strength is as expected for the reaction of with a dipositive 

cation. 

These points deserve further comment and will be individually 

discussed subsequently. 

Spectrum 

2+ 
The UV-visible spectrum of HCr(H20)^ produced by flash photolysis 

consists of a maximum at 385 + 5 nm and a minimum at 350 + 5 nm, in 

good agreement with the values 380 + 5 nm and 345 nm, respectively, 

reported by Cohen and Meyerstein (36). Absorbance maxima in the region 

390 to 410 nm are characteristic of many of the organochromium(III) 

2+ 
complexes, RCrCHgO)^ (2,20,25). Since the spectra are similar, Cohen 

and Meyerstein (36) assumed the same electronic transition was 
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2+ 
responsible for the 380 nm maximum of HCrCHgO)^ . Presumably another 

maximum at much higher energies exists as a charge-transfer-to-metal 

transition, but optical restrictions limited absorbance measurements in 

this work to X >_ 310 nm. In the pulse radiolysis experiments, only a 

very intense absorption rising into the UV was observed in the region 

260-310 nm, so the second maxima must lie at À < 260 nm. 

-1 -1 
The molar absorptivity of the maximum at 385 nm, 125 + 15 M cm 

-1 -1 
(see below), is about 35% lower than the value of 190 + 20 M cm , 

obtained from the pulse radiolysis work (36). While the agreement is 

not excellent, the values are of a similar order of magnitude. 

Scavengers 

Addition of NgO to the flash photolysis solution reduced the yield 

2+ 
of HCr(H20)g by 77%. Nitrous oxide is known to be an efficient 

scavenger for the hydrated electron. 

(3-6) 

kg/M"^s"^ = 8.7 X 10^ (121) 

0 + HgO OH* + OH" (3-7) 

pK^ = 11.9 + 0.2 (122) 

converting e into OH radicals. In acidic solution, protons compete 
aq 

with NgO for the hydrated electron, 

(3-4) 

k^/M~^s"^ = 2.3 x 10^° (123) 



www.manaraa.com

198 

2+ 
In the presence of Cr , an additional route by which hydrated electrons 

aq 

can be consumed exists, 

e " + Cr^* Cr"*" . (3-32) 
aq aq aq 

= 1.4 X 10^° (36) 

2+ 
The yield of H atoms in an aqueous, acidic solution of Cr^^, 

saturated with NgO, can be calculated from the above reaction rates. 

For = 1 X 10 and [Cr^^] = 1 x 10 ̂ M, in a solution saturated 

with NgO at 1 atm, [NgO] = 0.025 M, the fraction of e^^ which react by 

Reaction 3-4 is, 

Reaction Rate (4) 
Sum of Reaction Rates (4), (6), (32) 

^ (1 x 10"^) (2.3 x 10^°) 

(1 x 10~^)(2.3 x 10^°) + (0.025)(8.7 x 10^) + (1 x 10"^)(1.4 x 10^°) 

= 0.090. 

In the absence of NgO, the fraction increases to 0.62, or an 85% 

decrease in the yield of H atoms is predicted. If all H atoms are 

consumed by reaction with chromium(II) ions, 

H* + Cr^q HCrCHgO)^^^ , (3-1) 

k^/M"^s"^ = 1.5 x 10^ (36) 

rather than dimerization to molecular hydrogen, the yield of the 

2+ 
transient HCr(H20)^ ion would be expected to decrease by the same 

amount (85%), when made In the presence of NgO, in good agreement with 

the reduction in yield actually measured. 
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The production of HOCHgCrCHgO)^^^ rather than HCrCHgO)^^^, when 

methanol is added to the flash photolysis solution^ can be accounted for 

. 2+ 
by the scavenging of H atoms by CH^OH, rather than Cr^g, to form 

hydroxymethyl radicals. 

H* + CH3OH + Hg + HOCH2* (3-33) 

= (2.0 + 0.8) X 10^ (156) 

2+ 
These radicals will subsequently be scavenged by Cr , and form 

aq 

H0CH2Cr(H2O)̂ '̂''. 

HOCHg' + Cr^q -»• HOCHgCrCHgO)^^^ (3-34) 

= 1.6 X 10® (25) 

2+ 
For solutions flashed only once, the yield of H0CH2Cr(112©)^ , as 

-1 -1 
measured by its absorbance at 392 nm where e = 570 M cm (22,25), can 

be used to calculate the concentration of H atoms produced by a 250 J 

flash. If the very small amount of H atoms lost to dimerization is 

neglected, the fraction which react by Reaction 3-33 is, 

Reaction Rate (33) (1.0 + 0.4) x 10^ 

Sum of Reaction Rates (33), (1)" ^ g + o.4) x 10^ + 1.5 x 10^ 

= 0.8 - 0.9. 

Since the yield of Reaction 3-33 is given by the concentration of 

H0CH2Cr(H20)g^^ produced, 1.5 x 10 ̂ M, [H ] is calculated to be 

(1.8+0.1) X 10 Assuming this value is equal to the concentration 

2+ 
of HCr(H20)^ (produced in the absence of methanol), its molar 
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absorptivity at 380 nm is calculated from the absorbance change measured 

-1 -1 
at this wavelength, 0.0223 + 0.0011 (Z = 10 cm), to be 125 + 15 M cm 

The two scavenging experiments provide good evidence for the 

formation of e or H atoms from the UV photolysis of acidic solutions 
aq 

of chromium(II) perchlorate, in agreement with prior results obtained 

using continuous photolysis (124,167,168). 

Reaction kinetics 

The form of the rate law for Reaction 3-16 is the same as that 

reported by Cohen and Meyerstein (36). 

2+ 
^ = (kg + k[H20+])[HCr2+] (3-35) 

-1 4 -1 -1 
These authors report k^ ̂  Is and k= (1.8+0.2) x 10 M s at 

T = 22 + 2°C. The ionic strength, however, was not specified. From 

the flash photolysis studies, at y = 0.20 M, T = 26.0°C, k^ was found 

to be zero within experimental uncertainty, and k = (9.7 + 1.0) x 

3 -1 -1 
10 M s , or about 46% lower than the published value. The temperature 

difference between the studies, even if it were significant, would pre­

dict a larger value for the warmer temperature instead of the smaller 

number actually measured. It is conceivable the discrepancy is due to 

use of a higher ionic strength in the pulse radiolysis studies, because 

acid concentrations as high as 1 M were investigated by the 

previous workers. 
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Ionic strength 

In order to obtain the charge on a highly reactive intermediate in 

a bimolecular reaction, the variation of the rate with ionic strength 

has often been studied. Dorfman and Matheson (207) investigated the 

rate of the reaction, 

e^q" + Fe(CN)g^" -»• Fe(CN)g^" , (3-36) 

as a function of ionic strength to establish the charge on e 
aq 

Similarly, the ionic strength dependence of the rate of the reaction of 

e^q with NOg was studied in a quantitative fashion by Anbar and Hart 

(208). The reaction rate of the transitory CO^ anion with indole-3-

propionic acid was also shown to depend on the ionic strength as pre­

dicted for a mono-negative anion (209). 

2+ + 
When the rate constant for the reaction of HCr(H20)g with H^O 

was treated according to the Br(f)hsted-Debye-Huckel equation (Figure 3-6), 

it was seen that at y < 0.07 M, the data fit well to a line of slope +4, 

indicating the ionic charge of the transient was +2. At higher ionic 

strengths, the data were fit more successfully to an extended form of 

this relation, from which a value of +(1.65 + 0.3) was predicted for 

the ionic charge of the transient. While either treatment supports the 

assignment of the identity of the transient as a dipositive cation, use 

of the Br^nsted-Debye-Huckel equation for highly charged reactants of 

like sign has been criticized (80), at higher ionic strengths. 
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Mechanism of Protonolysis Reaction 

The kinetic isotope studies were helpful in postulating a picture 

of the transition state. Although the effect of replacing the hydrido 

2+ 
ligand of HCrCHgO)^ with deuterium could not be studied independently 

of the solvent change from H^O to DgO, the rate of cleavage of 

CHgCr(H20)g^^ by was compared to that by as an estimation of 

2+ 
this latter component. The acidolysis of CHgCrCHgO)^ was previously 

found (16) to follow the same rate law as the protonolysis of 

2+ 
HCrCHgO)^ , suggesting both reactions occur by the same mechanism, a 

necessary constraint. 

The magnitude of the kinetic isotope effect measured for the 

reaction of CHgCrCHgO)^^^^with HgO^, k^/k^ = 6.3+0.3, is somewhat 

smaller than the value estimated by using a simple harmonic oscillator 

model. For a transition state involving complete transfer of D"*" from 

to the methyl group of the organochromium(III) ion, the ratio 

k^/kjj can be estimated (142) from a consideration of the stretching 

frequencies of the 0-H and 0-D bonds. An approximate frequency of the 

0-D bond is obtained from V if the 0-H and 0-D bonds are treated 
V"-M 

as simple harmonic oscillators, which allows the stretching frequencies 

to be related to their reduced masses, ]J, 

1/2 
V, 

/2. (3-37) 
Vd / 

Using g = 3600 cm ^ or 1.08 x lO^^s Equation 3-37 predicts 

as - 7.64 X 10 s . This results in zero-point energies (E^ = hv/2) of 
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E „ = 2.15 X 10^ J/mol and E _ = 1.52 x 10^ J/raol. Dissociation of 
o,n o,D 

* 
either 0-H or 0-D leads to atoms having only translational energy, E , 

which is identical for 0 + H or 0 + D. But since the vibrational levels 

lie at lower energy for 0-D (E _ < E „) a larger activation energy is 
O,D c,n 

required to cleave the 0-D bond than 0-H. The Arrhenius equation pre­

dicts the rate of reaction will be slower for a higher activation energy, 

E^, where A is the frequency factor. 

-E /RT 
k = Ae ^ (3-38) 

The ratio k^/k^ can be obtained by application'of 

Equation 3-38, with E^ for 0-H given by (E - E^ g) and E^ for 0-D by 

- \,D>' 

H Ae RT 

Ae 
RT 

which simplifies to. 

, (3-39) 

S RT 

At 24.8 C k^/k^ = 12.7, or about 2-fold greater than the ratio measured. 

This implies cleavage of the 0-H bond is probably only partially com­

plete in the transition state. 

The value for k° /k° experimentally obtained for the reaction of 

2+ + 
HCrCHgO)^ with H^O , 4.8+1.2, is approximately the same magnitude 
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2+ 
as kg/ly for the acidolysis of CHgCrCHgO)^ , 6.3+0.3. This suggests 

that substitution of the hydrido ligand by deuterium has essentially no 

effect on the rate of protonolysis, and, therefore, that hydrogen-

chromium bond breaking is not rate-determining. 

Actually, this result is not surprising for hydride-metal bonds 

since it appears that small kinetic isotope effects are common to the 

protonolysis reactions of hydrido ligands (210). Both experimentation 

(211-213) and calculation (214) are supportive of small isotope effects 

for hydride transfers. Hawthorne and Lewis (211) found that the 

hydrolysis of the B-H bond in pyridine diarylboranes, 

(CgH5)2BH(C^H^N) + H^O -v (CgH^)2B0H + Hg + C^H^N , (3-40) 

has an isotope effect of only 1.5 when the hydrido ligand was replaced 

by deuterium. The small effect was explained in terms of a nonlinear 

transition state 

f 
,-H—0 

(CsHsiglCsHsNiB—H 

arising from electophilic attack at the B-H bond where electron density 

is greatest. Bending rather than stretching vibrations would be expected 

to be involved more, in agreement with calculations based on this type 

of model (214). 



www.manaraa.com

205 

Likewise, a three-center transition state can be pictured for the 

"f" 2"̂ " 
reaction of H^O with HCrCHgO)^ , arising from attack of the electro-

phile at the H-Cr bonding electrons. In this mechanism, H-Cr bond 

Ï 
H—"H 

,^0H2 HgOv 

H20^ I^OHg 

HgO 

3+ 

breaking would be of minimal importance; substitution by deuterium 

should not give rise to an isotope effect. However, the cleavage of 

the 0-H bond will be expected to demonstrate an isotope effect when 

substitution is made by deuterium, using D^O^. As in the reaction of 

CHgCrCHgO)^^^ with H^O^, k°g/k°g is smaller than that estimated (12.7) 

(see above) for 0-H, 0-D bonds. Presumably, this indicates once again 

that 0-H bond breaking is not complete in the transition state. The 

formation of the Hg molecule is clearly demonstrated by the three-center 

picture. After Hg dissociation from the axial position, a transient 

pentaaquochromium(III) species will be formed, which will be very rapidly 

3+ 
converted to [^(HgO)^ , in a secondary step. 

While the small isotope effect in itself would be inconclusive 

proof for the existence of a hydride, this result, combined with the 

evidence presented earlier, is further justification for the assignment 
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of the transient generated from the flash photolysis of Cr as the 
aq 

ion. 

The large negative entropy of activation, measured for the reaction 

of HCrCHgO)^^^ with H^O^, is clearly of a reasonable magnitude for 

formation of the highly charged (+3), and well-ordered transition state. 

The electrostatic contribution to AS can be estimated (215) by 

-10(+2)(+l) = -20 e.u., where +2 and +1 are the charges on the reactants. 

The enthalpy of activation, AH^, is a small value, only 6.3 kcal/mol, 

reflecting the relative ease at which the H-Cr bond is cleaved by acid. 

This might be an indication of a relatively ionic bond to chromium, 

2+ 
but the fact that HCr(H20)^ exists at all demonstrates there is some 

degree of covalency. 
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CONCLUSIONS 

The reaction of the isopropylpentaaquochromium(III) ion with 

molecular oxygen follows a free-radical chain mechanism similar to the 

autoxidation of organic compounds. One of the propagating reactions 

involves a novel 8^2 attack at the chromium center, by the isopro-

pylperoxy radical, liberating the isopropyl radical. The rate of its 

displacement from the organochromium(III) ion is too rapid to be 

occurring by a dissociative mechanism, so it is postulated the transi­

tion state involves a seven coordinate Intermediate. The primary 

products - acetone and hexaaquochromium(III) - are readily accounted for 

by the decomposition of the isopropylperoxochromium(III) intermediate 

formed in the propagating reaction. 

It is certainly reasonable to expect other organochromium(III) ions 

of this family to react with oxygen by a similar mechanism. From the 

present study, the requirements for such a scheme appear to be 

reactivity towards hemolysis, in order to initiate the chain reaction, 

and the ability of the organoperoxy radical to displace the organo 

radical from the substrate, via an 8^2 reaction, occurring at a rate 

competitive with bimolecular reactions of the peroxy radical. While 

factors affecting homolysis of the carbon-chromium bond, within the 

2+ 
RCrCHgO)^ family, are reasonably well understood, 8^2 reactions at 

transition metal centers are extremely rare. Additional kinetic 

studies, exploring the latter type reaction more completely, should 

more clearly delineate the important factors. 
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The B-hydroxyethylchromlum(III) ion was made by the photochemical 

2+ 
generation of 3-hydroxyethyl radicals in the presence of Cr^^ in dilute 

aqueous perchloric acid. While all three sources of HOCHgCHg radicals 

2+ 
explored —(1) Cr solutions saturated with nitrous oxide and 

aq 

ethylene, (2) HOCHgCHgCoCdmg BF2)2Py, and (3) Co(NH2)^02CCH2CH20H^''' — 

were successful, the first system was preferred as it was the simplest 

2+ 
chemically. The UV-visible spectrum of HOCH2CH2Cr(H20)^ supports its 

assignment as a sigma bonded organochromium(III) ion. The complex is 

highly reactive towards reactions with as expected; the rate-

limiting step is assigned to a proton-assisted beta-elimination of a 

water molecule, followed by rapid dissociation of ethylene from a 

3+ 
highly unstable ir-bonded C2H^Cr(H20)g intermediate. This study demon­

strates that functional group substitution on the organo ligand can . 

affect the reactivity of the carbon-chromium bond substantially. 

2+ 
The hydrido analog to the family of RCrCHgO)^ ions was made, and 

+ 
the kinetics of its reaction with H^O were studied using flash 

photolysis. The identity of the complex is consistent with its absorp-

4. 
tion spectrum (36), published (36) rate of reaction with H^O , and the 

expected dependence of the rate constant on ionic strength for a +2 

2+ 
charged ion. The reaction rate of the deuterated complex, DCr(D20)g , 

+ 
with DgO , shows a large kinetic Isotope effect, similar to the reaction 

2+ + 
of the CHgCr(D20)g ion with D^O , indicating it is 0-H bond breaking 

2+ 
which is rate-limiting in both cases. Protonolysis of HCrCHgO)^ is 

pictured as occurring via a nonlinear three-center transition state, 

wherein the H-Cr bond is still intact, characteristic of cleavage 

reactions of hydrides. 
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Description of Flash Photolysis Instrument 

The flash photolysis technique (216,217), developed by Norrish and 

Porter in 1949-1950 (218,219), is useful for the study of highly reac­

tive chemical species. A very intense, but short duration, flash of 

light initiates a photochemical reaction, generating a transient at a 

concentration such that it can be detected by some physical method. 

Detection is commonly accomplished by absorption spectroscopy, which can 

be utilized in two modes. In the first, flash spectroscopy, an absorp­

tion spectrum of the transient is obtained at a particular time after 

initiation. Operated in the kinetic spectrophotometry mode, an absorp­

tion at one wavelength can be followed as a function of time. 

The flash photolysis instrument assembled for the present work is 

of the latter type, suitable for obtaining kinetic data of photochemi-

cally generated transients. It is considered a conventional microsecond 

unit, in which the discharge of the flashlamps requires a time on the 

order of microseconds. The instrument consists of two main components -

the equipment necessary for production of the photolysis flash, purchased 

from Xenon Corporation (Model 710), and a spectrophotometer which was 

assembled by components. It is shown schematically in Figure A-1. 

The Xenon Model 710 system is comprised of several units. The 

energy for the flashlamps is produced by the Model-A High Energy 

Photolyzing Micropulser, which is capable of delivering 5 to 2000 J. 

The power source consists of a bank of capacitors which are charged to 

a predetermined voltage. Both the capacitance and charging voltage can 

be varied to achieve the desired flash energy, which is calculated from 
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Figure A-1. Schematic of flash photolysis instrument 
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Equation A-1, 

E/Joules = J C , (A-1) 

where C is in farads, and V is in volts. The capacitors are rated at 

10 yf each; however, direct measurement lead to a smaller average value 

of 7.6 ± 0.1 yf. Depending upon the manner in lAich they are connected, 

t h e  e q u i v a l e n t  c a p a c i t a n c e  o f  t h e  c i r c u i t  i s  3 . 8 ,  7 . 6 ,  1 5 . 2 ,  2 2 . 8 ,  o r  

30.4 yf. The charging voltage is continuously variable from 1.5 to 

10.0 kV. Maximum possible flash energies with various capacitor arrange­

ments are summarized in Table A-1. 

It is apparent from Table A-1 that a particular energy can be 

obtained with a variety of capacitances and voltages. Generally, higher 

capacitances are used so that smaller charging voltages are sufficient. 

The reason for this is that as the flashlamps age they become less able 

to "hold-off" higher voltages, and will fire before the capacitors have 

reached the full charge. Flash energies greater than about 200 J would 

be difficult if not impossible to achieve with a low circuit capacitance 

when using aged lamps. 

The energy from the Model-A is delivered to two high intensity, 

fast-extinguishing Xenon FP-5-100C flashlamps, which are connected in 

series. These lamps are linear quartz tubes, filled primarily with 

xenon gas and a small amount of a nonspeclfled molecular gas, such as 

oxygen, hydrogen, or nitrogen, which serves to shorten the flash 

duration to about 30-80 ys, depending on the energy dissipated. The 

FP-5-100C flashlamps operate to a maximum of 1000 J. 
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Table A-1. Maximum possible flash energies attainable with various 
capacitor arrangements 

Maximum Capacitor C f 
Energy^/J Arrangement E ^ 

190 (250) 2 
2 

in series 
grounded 

+ = = 3.8 

380 (500) 3 grounded ^1 = 7.6 

760 (1000) 2 
2 

in parallel 
grounded 

^1 + Cg = 15.2 

1140 (1500) 3 
1 

in parallel 
grounded 

^1 + c, + c, . 22.8 

1520 (2000) 4 in parallel ^1 + C2 + C3 + ^4 = 

^If capacitors are charged to 10.0 kV. Value in parentheses is 
energy calculated for 10 yf capacitors (as rated by Xenon Corporation). 

^Cg = equivalent capacitance of circuit. 
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The photolyzlng flash has an approximately continuous spectral 

energy distribution, ranging from 180 nm to well past 1000 nm, as shown 

below. 

PHOTOLYZING FLASH 

J 
A 

V 
A 

V J\ % rz r 

3000 5000 7000 9000 
ANGSTROMS 

(Adapted from Reference 220.) 

The energy distribution can be varied somewhat by the operator's 

choice of circuit characteristics. For flashlight more intense in the 

ultraviolet region, lower capacitances and higher voltages can be 

employed, while the reverse increases the output of infrared radiation. 

The UV spectral region can be effectively masked by slipping Pyrex 

glass tubes over the flashlamps, eliminating wavelengths less than about 

280 nm. Alternatively, the solution to be photolyzed can be contained 

in an all-quartz jacketed cell in which filtration of unwanted radiation 

can be accomplished by solvents or solutions in the outer jacket. The 

UV cut-off of various solvents and solutions has been tabulated 

(221,222). 

The flashlamps require an additional "triggering" voltage of 30-40 

kV in order to accept the energy from the power source and actually 

fire. This is supplied from the Model-C Trigger Module through a high 
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voltage ceramic feed. The trigger wire is wrapped within the inter-

electrode regions of the lamps, as shown schematically in Figure A-2. 

The lamps are mounted parallel to one another in the FH-1275 Photo-

lyzing Housing, in which electrical connections from the Model-A are 

made on one end of the housing using high voltage insulated cables and 

connectors. Electrical contact between the lamps is made through a brass 

holder on the other end of the housing, which also serves to secure the 

lamps in place. The substrate is contained in a quartz, cylindrical 

spectroscopic cell of 2 to 10 cm path length, and is supported on a 

locally machined aluminum holder, parallel to and centered between the 

lamps. The flashlight enters through the body of the cell, at right 

angles to the monitoring beam. 

The Model-A and -C are operated remotely using the Model-710F 

remote-control panel, for safety reasons. 

The spectrophotometer consists of a monitoring light source, 

lenses, a monochromator, photomultiplier tube, and an oscilloscope. 

The monitoring source is either a 50 watt Osram quartz-halogen 

64610 lamp, for visible and near UV (to 320 nm) work, or a 75 watt 

miniature xenon arc-lamp, an Oriel 6251 for the UV. Either lamp can be 

mounted in the small housing. Oriel 6302, from which the factory 

installed blower was removed. Cooling is accomplished instead with a 

filtered stream of air from the laboratory's air jet. The quartz-halogen 

lamp is powered by a Nobatron DC source operating at 11 volts, 4 amps. 

An Illumination Industries Model CA-75-18267 power supply is used for 

the xenon arc-lamp. 
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Figure A-2. Illustration of trigger wire attachment to flashlamps 
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A n  f / 1 . 5  U V  g r a d e  s i l i c a  c o n d e n s i n g  l e n s ,  i n  a  f o c u s s i n g  s l e e v e ,  i s  

mounted directly onto the lamp housing. Either a collimated or focussed 

image of the source is possible. An additional lens, used after the 

condenser, provides a more intense, collimated beam than with the latter 

alone. The image of the source is brought to focus with the condenser, 

and the second lens is placed at its focal length (10 cm) frora the image, 

producing a collimated beam of light. After passage of the monitoring 

light through the sample, it is directed through the baffle, which 

serves to eliminate some of the scattered flashlight from entering the 

monochromator. After emerging from the baffle the beam is focussed 

onto the entrance slit of the monochromator, a 0.25 meter Jarrell-Ash 

8 2 4 1 0  w i t h  f / 3 . 6  o p t i c s .  T o  f u l l y  i l l u m i n a t e  t h e  g r a t i n g  a n  f / 3 . 6  

lens is required. Because the beam of light emerging from the baffle 

h a s  a  d i a m e t e r  o f  1  c m ,  a  l e n s  w i t h  a  f o c a l  l e n g t h  o f  3 . 6  c m  i s  

necessary, 

fjf: _ focal length 
diameter of beam 

A quartz lens with a focal length of about 4 cm is in current use. 

Entrance and exit slits, each of 1 mm width, were chosen to maximize the 

light through the monochromator. With its dispersion of 3.3 nm/mm, a 

3.3 nm band resolution is possible. After monochromation, the light 

beam is directed through the exit slit onto the photocathode of an RCA 

1P28 photomultiplier tube. The light Intensity is converted to a cur­

rent, and amplified by the dynode chain of the PMT, shown schematically 

in Figure A-3. The cathode is maintained at a constant voltage, which 
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-1200V (max) 

anode 

i o .01 M-F 

0.022 yUF > 100 K 

100 V 
5 W 

0.047 /zF ? 100 K 

IT 0.1 lULf 100 K 

—  0 2 2 / ^ F  1 0 0 K  

< cathode 

4 1 

4 2 

H 3 

4 4 

150 V 

200 V 
5 W 

4 7 K  

Figure A-3. Circuit diagram of PMT dynode chain 
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is wavelength-dependent, and ranges from 600-1200 volts. The amplified 

current at the anode is applied to the oscilloscope across a variable 

load resistance, which determines the amplification of the signal. 

The oscilloscope is a Tektronix 5115 single-beam storage oscillo­

s c o p e  w i t h  a  5 A 1 9  N  d i f f e r e n t i a l  a m p l i f i e r ,  f e a t u r i n g  v a r i a b l e  d c  o f f ­

set, and a 5B10 N time base/amplifier as plug-in units. The rise time 

of the oscilloscope and amplifier plug-in is 0.2 ys, and the writing 

speed is approximately 0.2 to 0.8 divisions/ys. Triggering of the 

oscilloscope is accomplished by a Xenon Model-E optical trigger which 

senses photoelectrically the firing of the flashlamps. A trace of the 

photomultiplier voltage as a function of time after flashing the lamps 

is stored on the oscilloscope screen, and a Polaroid photograph is made 

using a Tektronix C-5B camera. 

Operation of Spectrophotometer 

The intensity of the light detected by the PMT at any given wave­

length must be proportional to the voltage measured with the oscillo­

scope to obtain meaningful data. As long as the amount of anode current 

drawn from the RCA 1P28 tube does not exceed the manufacture's rating of 

0.1 mamp, there will be a linear relation, although at strong absorptions 

(>80%), stray light from the monitoring beam may cause deviations. 

The magnitude of the anode current (i^) is determined by the 

voltage (V^) at the photoanode of the PMT and the load resistance CR), 

by Equation A-2, Ohm's law. 

V 
_ a /. 
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The magnitude of is also dependent upon the voltage at which the 

photocathode of the PMT is operated, variable from 600-1200 V. Higher 

PMT voltages are associated with larger amounts of photomultiplier shot 

noise, and hence, are less satisfactory. Optimization of the load 

resistance is a more practical solution to maximize V^. However, the 

load resistance is limited by two constraints: (1) i^ must be less 

than 0.1 mamp (see above), and (2) the time response of the circuit. 

The latter is concerned with the rise time^ of the circuit defined by 

the PMT, oscilloscope, and coaxial cable connecting the two and is 

determined (Ref. 216, p. 408) from Equation A-3, 

t ^  =  2 . 2  R C  .  ( A - 3 )  

R can be taken as the load resistance. The capacitance of the PMT and 

oscilloscope are fixed; the contribution from the connecting cable can 

be minimized by locating the PMT and oscilloscope as close as physically 

possible. Typical rise times can be calculated from Equation A-3 using 

a nominal value of C = 100 pf, and the available load resistances of 

4.7, 47, and 470 kS2 (see Figure A-3), to be 1, 10, and 100 ys. Generally, 

a load resistance of R = 47 kO is chosen as this is a good compromise 

between time response and the magnitude of which can be obtained. For 

ig less than 0.1 mamp, the photoanode voltage may be as high as 4700 mV 

- more typically a maximum value of 1000 mV is chosen for because it 

can be achieved with photocathode voltages no higher than about 700 V, 

1 
Rise time, t^, is defined as the time required by the external cir­

cuit for the anode voltage to rise from 0.1 to 0.9 V^. 
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at almost all wavelengths, thereby minimizing the PMT noise. At wave­

lengths lower than about 350 nm, it is preferable to accept a smaller 

photoanode voltage, 500 mV, in order to avoid the large amount of noise 

associated with high photocathode voltages. 

For very fast reactions, using R =4.7 k£2 may be necessary, although 

the transient must then have a relatively large absorbance change at 

the monitoring wavelength. To avoid artifacts, the rise time must 

always be less than the reaction time measured. 

The linearity of light intensity with oscilloscope deflection should 

always be ascertained after any adjustment of the optical components. 

A spectrophotometric cell is filled with solvent, and placed in the 

monitoring beam inside the flashlamp housing. The monitoring wavelength 

and load resistance are chosen, and the voltage to the photocathode of 

the PMT is increased until a deflection of 1000 mV (or other value) 

below ground is obtained, as monitored on the oscilloscope. The cell 

is filled with a stable compound, absorbing at this wavelength, and the 

oscilloscope deflection is noted. The absorbance, D, is determined by 

the Beer-Lambert absorption law, 

D = - log , (A-4) 
o 

where I is the intensity (measured in mV) of the light reaching the 

monochromator after passage through the sample, and is the Intensity 

measured with solvent in place. This absorbance can be compared with 

that from a calibrated double-beam spectrophotometer. Repeating 
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measurements several more times with successively more dilute samples 

will establish whether Equation A-4 is valid. 

It is also useful to compare the spectrum of some absorbing sample 

with that obtained from another spectrophotometer. In Figure A-4 the 

spectrum of an aqueous solution of Co(NHg)gH20(C10^)2, obtained point-

by-point using the spectrophotometer of the flash photolysis instrument, 

is compared with that obtained from a Gary 219. Collected in Table A-2 

are the voltages applied to the PUT, at each wavelength, to serve as a 

reference of typical PMT voltages for future users. From Figure A-4, it 

can be seen that deviations occur at absorbances greater than 0.7 in the 

visible, and greater than 0.5 in the UV. The amount of stray light (223) 

calculated at 340 nm is 8.8%. Because stray light is most detrimental 

for measurement of large absorbances, it need not be of concern in flash 

photolysis work, where transients are present at such small concentrations. 

The quartz-halogen lanç was used for the spectrum of Figure A-4 

because it is the preferred source for visible and near-UV work. The 

xenon arc-lamp provides more intense UV irradiation, and therefore, 

might be preferred at wavelengths less than about 350 nm; however, the 

excellent stability of the quartz-halogen lamp cannot be matched by the 

arc-lamp, nor its convenience of use. The xenon arc-lamp must be 

vented for ozone, and its very intense high energy radiation requires 

protection of the operator's eyes, preferably with sunglasses. Presently, 

absorption measurements are restricted to A ^ 310 nm because the 

Jarrell-Ash monochromator suffers from scattered light and second-order 

diffractions at wavelengths further into the UV. 
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Figure A-4. 

.3+ 
The electronic spectrum of Co(HN3)5H20"" obtained with 
spectrophotometer of flash photolysis instrument (circles) 
and from Gary 219 spectrophotometer (line) 
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Table A-2. Typical PMT voltages for various wave­
lengths^ 

X/nm Photocathode Voltage of PMT/V 

600 690 

580 670 

560 665 

540 660 

520 660 

500 660 

480 665 

460 675 

440 6 7 5  

420 680 

400 695 

380 720 

360 750 

340 830 

320^ 935 

= 1000 mV, except as noted, with H2O; cell 
length = 10 cm; load resistance = 47 kO; quartz-
halogen lamp. 

= 500 mV. 
o 
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Operation of Flash Photolysis Instrument 

This section will be presented in a format useful for actually con­

ducting an experiment, following a step-by-step approach. 

Initial equipment adjustment 

1. One hour before the experiment the monitoring light and voltage to 

P M T  ( ~ 5 0 0  V )  a r e  t u r n e d  o n ;  a  s t r e a m  o f  a i r  f r o m  t h e  l a b o r a t o r y  j e t  

provides cooling. The quartz-halogen lamp is run at 11 volts, 4 

amps; the xenon arc-lamp must be operated at 12.5 volts, 6 amps, and 

the generated ozone must be vented through a hood. 

2. Solvent in the desired path length cell is placed in the monitoring 

b e a m ,  a n d  t h e  m o n i t o r i n g  w a v e l e n g t h  i s  s e t .  

3. The load resistance is selected, generally 47 kf2. 

4. The signal from the PMT is connected via a coaxial cable to the 

positive input of the oscilloscope. The negative input is 

grounded. The time base "source" is set to "line", and a sweep 

time of about 1 ms/div selected. The positive input is then grounded 

and the trace (0% T) positioned one major graticule division below 

the top of the screen. Ground is removed and thirty minutes before 

the experiment I^ (100% T) is set to 1000 mV (or some other value) 

by increasing the PMT voltage. This needs readjustment every few 

minutes, till constant. 

Actual experiment 

1. The capacitance and voltage of the Model-A are adjusted to give the 

desired flash energy. 



www.manaraa.com

239 

2. The sample to be photolyzed is placed in the monitoring beam and 

the housing cover closed. If it is photosensitive to the light of 

the monitoring source, the shutter must be used. The hood vent is 

centered over the housing. 

3. The initial voltage of the sample is recorded, , and the desired 
o 

time base set. 

4. Power to the Model-A, -C, -E, and remote control panel (Model-A half) 

are turned on. 

5. The oscilloscope screen is set to the storage mode, and the time 

base "source" is set to "external". 

6. The capacitors of the Model-A are charged from the remote control 

panel, and when fully charged, the lamps are triggered. If the 

flashlamps fail to fire - turn "high voltage" to "off", and increase 

the voltage ouptut of the Model-C. Then repeat step 6. 

7. The trace of light intensity, I^, versus time will be recorded on the 

oscilloscope screen. Tlie oscilloscope is triggered (manually) to 

record the final light intensity, I^ . If desired a photograph is 

made. 

8. Power to the remote control panel and Model-A and -C are turned 

"off" BEFORE^ removing the sample from the monitoring source. 

It must be understood that whenever the power to the Model-A is on, 
a potentially lethal situation exists should the operator make bodily 
contact with any portion of the circuitry driving the flashlamps, if the 
capacitors are charged. Hence, to be absolutely certain that the Model-A 
is not charged, one must ascertain the power to the Model-A (and pref­
erably the Model-C also) are off before reaching into the housing com­
partment. Turning the power off causes capacitor discharge through a 
shorting bar inside the Model-A. 
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9 .  O f t e n  ( i f  n o t  a l w a y s )  t h e  s i z e  o f  t h e  t r a n s i e n t  w i l l  n e e d  a m p l i c a ­

tion, which is achieved by using the dc off-set capability of the 

oscilloscope amplifier. The desired oscilloscope sensitivity is 

set, and with the dc off-set engaged, the trace corresponding to the 

light intensity before the flash is brought on screen; its optimal 

position on the screen can be learned only by experimentation. 

Steps 3-8 are repeated, plus the final light intensity should also 

be read with the dc off-set "off", to determine its absolute value. 

Data analysis 

Kinetic data consist of a trace of the light intensity, I^, of the 

solution as a function of time after triggering the flashlamps. For a 

system where the products absorb more than the reactants, such a trace 

is shown schematically in Figure A-5. The line marked "a" is the ground 

or 0% T level (shutter closed); "b" is (100% T) (shutter open); "c" 

is the kinetic trace due to loss of absorbance with time upon conversion 

to product(s), which has a smaller molar absorptivity than the transient 

(for this particular example) at the monitoring wavelength; and "d" is 

Values of can be converted to absorbance, D^, by use of Equation 

A-4, with 1=1^. However, for very small transients, it can be shown 

mathematically that will be linearly related to I^, rather than the 

logarithmic relation of Equation A-4. This simplifies data analysis 

somewhat as the actual transmittances of the kinetic trace, measured 

in mV, can be used directly in kinetic plots of ln(D^ - D^) versus time, 

for example. Or, for even further convenience, any quantity linear to 
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0%T 

mV 

1 00% T 

time 
Figure A-5. Schematic of a kinetic trace for a system where 

^transient Sroduct(s) the monitoring wavelength. 
See text for identification of a - d 
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such as the height of the transient, measured in centimeters from 

, may be used directly. Generally, then, the distance from trace 

"c" to is measured at various times and this quantity, cm^, or called 

in this thesis, used directly in kinetic analysis of the data. To 

convert cm^ (D^) to the absorbance at time t, D^, Equation A-5 is useful, 

°t " 1°: ; , f mV , ' 
< "ST ' 

where I is in millivolts. 
00 

In Figure A-6, the decay profile or scattered flashlight which is 

seen by the PMT is reproduced. This trace is obtained with the shutter 

closed. The decay profile limits the time at which data collection may 

begin to times on the order of a fevj tenths of a millisecond for this 

instrument. Its magnitude, and its duration are dependent upon the 

monitoring wavelength, energy of the flash, type of spectroscopic cell 

employed, the PMT voltage, and most importantly the time response of the 

circuit, i.e., the load resistance, as discussed above. The decay pro­

file shown in Figure A-6 was obtained at 420 nm, with 250 J, no cell, 

680 V on PMT, and a load resistance of 47 kf). Both the magnitude of 

the scattered flash and its duration (>0.2 ms) should be noted. 

Simple chemical systems for use as calibration reactions 

Br One of the easiest transients to generate by flash 

photolysis is the dibromide radical anion Brg . Excitation of the CTTS 

transition of 0.1 M Br^^ in aqueous solution causes photoelectron 

production and the formation of the Br atom (224), which is very 
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IV 
d 

20 
d 

Figure A-6. Decay profile of flashlamps. Monitoring X = 420 nm; flash 
energy = 250 J; no cell; 680 V on PMT; load resistance = 
47 kfl 
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rapidly scavenged by another bromide ion to form the intensely absorbing 

Brg. Bimolecular reaction of the radical anions leads to formation of 

Br2 and Br . The reactions are summarized: 

hv 
Br-q ^ Br* + e'^ (A-6) 

k ~ 10^° 2 
Br + Br ^ —> Br^ (A-7) 

2Br~ V Br^ + Br" (A-8) 

k g / M " ^ s " ^  =  ( 1 . 9  + 0 . 6 )  X  1 0 ^  ( 2 2 5 ) ^  

While Reactions A-6 and A-7 are so rapid that they occur within the 

decay profile of the flashlamps. Reaction A-8 is of a convenient rate 

-1 -1 
to follow. The kinetics are monitored at 366 nm (e = 7800 M cm ) by 

following the decrease in absorbance due tc Reaction A-8, using a 250 J 

non-filtered flash, an oscilloscope sensitivity of 20 or 50 mV/dlv, and 

a time base set to 0.1 ms/div. The data are treated according to conven­

tional second-order kinetics to evaluate kg. 

FeCCgO^)^ The flash photolysis of monooxalatoiron(III) is an 

excellent system to study for determining the accuracy of reaction rates 

measured using the flash photolysis Instrument because reaction rates 

are well known (226). In the absence of any excess iron(lll), the fol­

lowing reactions are believed to be responsible: 

^kg is an average of the values listed In Reference 225. 
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[Fe OCOCO-] (A-9a) 

[Fe^^OCOCOg ]"*" + Fe^"^ + .CgO^ (A-9b) 

• V4 + ^ Fel^CCgO^) + ZCOg (A-10) 

Fel^CCgO^) + Fell^CCgO^)* ^ Fe2+ + CgO^- + Fell^CCgO^)* (A-11) 

2[Fe^^OCOCO^]^ > 2Fe^^ + nonradical products (A-12) 

The overall reaction occurs in two stages, both leading to absorbance 

decreases. Reactions A-9a, A-9b, A-10, and A-12 comprise the first loss 

of absorbance over the time period 0 :S t <50 ysec. The second 

absorbance loss is due to Reaction A-11 which occurs over the range 

50 Msec < t s 5 msec. Reaction A-11 is conveniently followed at 430 nm 

using a 250 J nonfiltered flash, an oscilloscope sensitivity of 

20 mV/dlv, and a time base set at 0.5 ms/div. Recommended concentrations 

o f  t h e  r e a c t a n t s  a r e  4 . 9 9  x  1 0  ^  M  F e C C l O ^ ) ^  a n d  5 . 0 0  x  1 0  ^  M  

in 0.145 M with p = 0.99 M (LiClO^). The data is treated 

according to pseudo-first-order kinetics to obtain which is equal 

+ + 
to k^^EFeCCgO^) ]. The concentration of FeCCgO^) can be calculated 

from a consideration of the equilibria: 

Fe^^ + ox ^ ) Fe(ox)^ 

=  3 . 9  x 10^ (22°C, y = 1.0 M) 
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HgOx f=ï + Hox 

K  / M  =  8 . 4 0  X  1 0 " ^  ( y  =  1 . 0  M )  
*1 

- + 2-
Hox r H + ox 

K  / M  =  2 . 7 9  x lOT* (li = 1.0 M) 
^2 

2- 3+ 
Let x =  [ o x  ]  a n d  y  =  [ F e  ] ,  a t  e q u i l i b r i u m ,  s o  t h a t  t h e  s t o i c h i o m e t r i c  

c o n c e n t r a t i o n  o f  o x a l a t e  i s ,  

[oxliot = [Hgox] + [Hox ] + X + [Fe^^^l^Qt - y • (A-13) 

The above relationship can be solved for x and y, using the above three 

equilibria, so that [Fe(ox)^] can be obtained from K^, and hence, a value 

f o r  C o o p e r  a n d  D e g r a f f  ( 2 2 6 )  r e p o r t  ( 2 2 ° C ,  y  =  1 . 0  M )  =  

( 2 . 9 5  +  0 . 4 0 )  X  1 0 ^  M  ^ s  t h e  a c t i v a t i o n  p a r a m e t e r s  w e r e  a l s o  m e a s u r e d  

(226) so kj^j^ can be calculated for any other temperature. 
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